Home
Class 12
MATHS
Z = 5x + 10y x + y ge 60, x + 2y le 12...

`Z = 5x + 10y`
`x + y ge 60, x + 2y le 120, x -2y ge 0, x, y ge 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the linear programming problem given by the objective function \( Z = 5x + 10y \) with the constraints: 1. \( x + y \geq 60 \) 2. \( x + 2y \leq 120 \) 3. \( x - 2y \geq 0 \) 4. \( x \geq 0 \) 5. \( y \geq 0 \) we will follow these steps: ### Step 1: Identify the Constraints We have the following inequalities: - \( x + y \geq 60 \) - \( x + 2y \leq 120 \) - \( x - 2y \geq 0 \) - \( x \geq 0 \) - \( y \geq 0 \) ### Step 2: Convert Inequalities to Equations To find the boundary lines, we convert the inequalities into equations: 1. \( x + y = 60 \) 2. \( x + 2y = 120 \) 3. \( x - 2y = 0 \) (or \( x = 2y \)) ### Step 3: Find Intercepts For each equation, we find the x-intercept and y-intercept. 1. For \( x + y = 60 \): - x-intercept: \( (60, 0) \) - y-intercept: \( (0, 60) \) 2. For \( x + 2y = 120 \): - x-intercept: \( (120, 0) \) - y-intercept: \( (0, 60) \) 3. For \( x = 2y \): - When \( y = 0 \), \( x = 0 \) (point \( (0, 0) \)) - When \( x = 60 \), \( y = 30 \) (point \( (60, 30) \)) ### Step 4: Graph the Constraints Plot the lines on a graph. The feasible region is determined by the inequalities: - The line \( x + y = 60 \) is shaded above. - The line \( x + 2y = 120 \) is shaded below. - The line \( x = 2y \) is shaded above. - The first quadrant is considered due to \( x \geq 0 \) and \( y \geq 0 \). ### Step 5: Identify the Feasible Region The feasible region is the area where all shaded regions overlap. This region is bounded by the points where the lines intersect. ### Step 6: Find the Corner Points To find the corner points of the feasible region, we solve the equations: 1. Intersection of \( x + y = 60 \) and \( x + 2y = 120 \): - Substitute \( x = 60 - y \) into \( x + 2y = 120 \): \[ 60 - y + 2y = 120 \implies y = 60 \implies x = 0 \quad \text{(Point A: (0, 60))} \] 2. Intersection of \( x + 2y = 120 \) and \( x = 2y \): - Substitute \( x = 2y \) into \( x + 2y = 120 \): \[ 2y + 2y = 120 \implies 4y = 120 \implies y = 30 \implies x = 60 \quad \text{(Point B: (60, 30))} \] 3. Intersection of \( x + y = 60 \) and \( x = 2y \): - Substitute \( x = 2y \) into \( x + y = 60 \): \[ 2y + y = 60 \implies 3y = 60 \implies y = 20 \implies x = 40 \quad \text{(Point C: (40, 20))} \] ### Step 7: Evaluate the Objective Function at Each Corner Point Now we evaluate \( Z = 5x + 10y \) at each corner point: 1. At \( (0, 60) \): \[ Z = 5(0) + 10(60) = 600 \] 2. At \( (60, 30) \): \[ Z = 5(60) + 10(30) = 300 + 300 = 600 \] 3. At \( (40, 20) \): \[ Z = 5(40) + 10(20) = 200 + 200 = 400 \] ### Step 8: Determine Maximum and Minimum Values From the evaluations: - Maximum \( Z = 600 \) occurs at points \( (0, 60) \) and \( (60, 30) \). - Minimum \( Z = 400 \) occurs at point \( (40, 20) \). ### Final Answer The maximum value of \( Z \) is \( 600 \) at points \( (0, 60) \) and \( (60, 30) \), and the minimum value of \( Z \) is \( 400 \) at point \( (40, 20) \).
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (Long Answer Type Questions )|23 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (MULTIPLE CHOICE QUESTIONS)|12 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12(b) (Short Answer Type Questions)|5 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

Z = 5x + 10y x + 2y le 120, x + y ge 60, x - 2y ge 0, x ge 0 , y ge 0 .

x + 2y le 10, x + y ge 1, x-y le 0, x ge 0, yge 0

x + y le 10, 4x + 3y le 24, x ge , x ge 0, y ge 0

Z = 15x + 30y x + y le 8, 2x + y ge 8, x - 2y ge 0, x, y ge 0

Z = x + 2y x + 2y ge 100, x - y le 0, 2x + y le 200, x, y ge 0

Z = 7x + 4y 2x + y le 10, x + 2y le 12, x ge 0, y ge 0

(i) Z = 20x + 10y x + 2y le 28, 3x + y le 24, x ge 2, x, y ge 0 (ii) Z = 7x + 10y 4x + 6y le 240, 6x + 3y le 240, x ge 10, x ge 0, y ge 0 (iii) Z = 22x + 44y subject to the constraints: x + y ge 3, 3x + 8y le 24, x - y ge 0, x, y ge 0 .

Z = 4x + y x + y le 50, 3x + y le 90, x ge 0, y ge 0

MODERN PUBLICATION-LINEAR PROGRAMMING -EXERCISE 12(b) (Long Answer Tyoe Questions(I)) (LATQ)
  1. Z= 4x + 7y x + 2y le 20, x + y le 15, x ge 0, y ge 0.

    Text Solution

    |

  2. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0 , y ge 0.

    Text Solution

    |

  3. Z = 6x + 11y 2x + y le 104, x + 2y le 76, x, y ge 0

    Text Solution

    |

  4. Z = 7x + 4y 2x + y le 10, x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  5. (i) Z = 20x + 10y x + 2y le 28, 3x + y le 24, x ge 2, x, y ge 0 (ii...

    Text Solution

    |

  6. Minimize (16-21): OBJECTIVE FUNCTION CONSTRAINTS Z = 200x + 500y ...

    Text Solution

    |

  7. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  8. Z = 3x + 5y x + 3y ge 3, x + y ge 2,x ge 0, y ge 0

    Text Solution

    |

  9. Z = 2x + 3y x ge 0, y ge 0, 1 le x + 2y le10

    Text Solution

    |

  10. Z = 3x + 9y x + 3y le 60, x + y ge 10, x le y , x ge 0, y ge 0

    Text Solution

    |

  11. Z = 5x + 10y x + y ge 60, x + 2y le 120, x -2y ge 0, x, y ge 0

    Text Solution

    |

  12. Maximize if possible: (i) Z = 3x + 2y subject to the constraints: x ...

    Text Solution

    |

  13. Maximize: Z = -x + 2y, subject to the constraints: x ge 3, x + y ...

    Text Solution

    |

  14. Maximize : Z = x + y,subject to the constraints: x - y le -1, -x +...

    Text Solution

    |

  15. Minimize and Maximize(25-29): OBJECTIVE FUNCTION CONSTRAINTS Z = ...

    Text Solution

    |

  16. Z = 5x + 10y x + 2y le 120, x + y ge 60, x - 2y ge 0, x ge 0 , y ge ...

    Text Solution

    |

  17. Z = 15x + 30y x + y le 8, 2x + y ge 8, x - 2y ge 0, x, y ge 0

    Text Solution

    |

  18. Z = x + 2y x + 2y ge 100, x - y le 0, 2x + y le 200, x, y ge 0

    Text Solution

    |

  19. (i)Z = 3x + 2y x + 3y le 60, x + y ge 10, x le y, x, y ge 0 (ii)Z = ...

    Text Solution

    |

  20. Consider the following LPP: Maximize Z = 3x + 2y subject to the cons...

    Text Solution

    |