Home
Class 12
MATHS
Maximize: Z = -x + 2y, subject to the ...

Maximize:
`Z = -x + 2y`, subject to the constraints:
`x ge 3, x + y ge 5, x + 2y ge 6, y ge 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the linear programming problem of maximizing the objective function \( Z = -x + 2y \) subject to the given constraints, we will follow these steps: ### Step 1: Write down the objective function and constraints The objective function is: \[ Z = -x + 2y \] The constraints are: 1. \( x \geq 3 \) 2. \( x + y \geq 5 \) 3. \( x + 2y \geq 6 \) 4. \( y \geq 0 \) ### Step 2: Convert the inequalities into equations To graph the constraints, we convert each inequality into an equation: 1. \( x = 3 \) 2. \( x + y = 5 \) 3. \( x + 2y = 6 \) 4. \( y = 0 \) ### Step 3: Find the intercepts for each equation - For \( x = 3 \): This is a vertical line at \( x = 3 \). - For \( x + y = 5 \): - \( x \)-intercept: Set \( y = 0 \) → \( x = 5 \) (point (5, 0)) - \( y \)-intercept: Set \( x = 0 \) → \( y = 5 \) (point (0, 5)) - For \( x + 2y = 6 \): - \( x \)-intercept: Set \( y = 0 \) → \( x = 6 \) (point (6, 0)) - \( y \)-intercept: Set \( x = 0 \) → \( 2y = 6 \) → \( y = 3 \) (point (0, 3)) ### Step 4: Graph the constraints Plot the lines on a graph: - Draw the vertical line for \( x = 3 \). - Draw the line for \( x + y = 5 \) connecting points (5, 0) and (0, 5). - Draw the line for \( x + 2y = 6 \) connecting points (6, 0) and (0, 3). - Draw the horizontal line for \( y = 0 \) (the x-axis). ### Step 5: Identify the feasible region The feasible region is where all the constraints overlap. Since we have inequalities, we will shade the area that satisfies all the constraints: - The area must be to the right of \( x = 3 \). - Above the line \( x + y = 5 \). - Above the line \( x + 2y = 6 \). - Above the x-axis (where \( y \geq 0 \)). ### Step 6: Determine the corner points of the feasible region The corner points of the feasible region can be found by solving the equations of the lines where they intersect: 1. Intersection of \( x + y = 5 \) and \( x + 2y = 6 \): - Solve the system: \[ x + y = 5 \quad (1) \] \[ x + 2y = 6 \quad (2) \] - From (1): \( y = 5 - x \) - Substitute into (2): \[ x + 2(5 - x) = 6 \\ x + 10 - 2x = 6 \\ -x + 10 = 6 \\ x = 4 \quad \Rightarrow \quad y = 5 - 4 = 1 \] - Corner point: \( (4, 1) \) 2. Intersection of \( x + y = 5 \) and \( x = 3 \): - Substitute \( x = 3 \) into \( x + y = 5 \): \[ 3 + y = 5 \\ y = 2 \] - Corner point: \( (3, 2) \) 3. Intersection of \( x + 2y = 6 \) and \( x = 3 \): - Substitute \( x = 3 \) into \( x + 2y = 6 \): \[ 3 + 2y = 6 \\ 2y = 3 \\ y = 1.5 \] - Corner point: \( (3, 1.5) \) ### Step 7: Evaluate the objective function at each corner point Now we evaluate \( Z = -x + 2y \) at each corner point: 1. At \( (4, 1) \): \[ Z = -4 + 2(1) = -4 + 2 = -2 \] 2. At \( (3, 2) \): \[ Z = -3 + 2(2) = -3 + 4 = 1 \] 3. At \( (3, 1.5) \): \[ Z = -3 + 2(1.5) = -3 + 3 = 0 \] ### Step 8: Determine the maximum value The maximum value of \( Z \) occurs at the point \( (3, 2) \) where \( Z = 1 \). ### Final Result The maximum value of the objective function \( Z \) is: \[ \text{Maximum } Z = 1 \text{ at the point } (3, 2). \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (Long Answer Type Questions )|23 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (MULTIPLE CHOICE QUESTIONS)|12 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12(b) (Short Answer Type Questions)|5 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

Maximise Z= -x + 2y , subject to the constraints: x ge 3, x + y ge 5, x + 2y ge 6, y ge 0 .

Minimize Z = 3x + 2y subject to the constraints : x + y ge 8, 3x + 5y le 15, x ge 0, y ge 0 .

Maximize : Z = x + y ,subject to the constraints: x - y le -1, -x + y le 0, x ge 0, y ge 0

Maximum Z = 3x + 5y subject to the constraints : x + 2y ge 10, x + y ge 6, 3x + y ge 8, x ge 0, y ge 0 .

Minimize Z = x + 4y subject to constraints x + 3y ge 3 , 2x + y ge 2, x ge 0 , y ge 0

2x + y ge 6, x + 2y ge 8, x ge 0, y ge 0

Solve the LPP graphically: Minimize Z = 4x + 5y Subject to the constraints 5x + y ge 10, x + y ge 6, x + 4y ge 12, x , y ge 0

Maximize Z = 5x + 3y subject to the constraints: 3x + 5y le 15, 5x + 2y le 10, x ge 0, y ge 0

(i) Z = 20x + 10y x + 2y le 28, 3x + y le 24, x ge 2, x, y ge 0 (ii) Z = 7x + 10y 4x + 6y le 240, 6x + 3y le 240, x ge 10, x ge 0, y ge 0 (iii) Z = 22x + 44y subject to the constraints: x + y ge 3, 3x + 8y le 24, x - y ge 0, x, y ge 0 .

Maximize if possible: (i) Z = 3x + 2y subject to the constraints: x -y le 1, x + y ge 3, x ge 0, y ge 0 (ii) Z = 3x + 4y subject to the constraints : x-y le -1, -x + y le 0, x ge 0, y ge 0 .

MODERN PUBLICATION-LINEAR PROGRAMMING -EXERCISE 12(b) (Long Answer Tyoe Questions(I)) (LATQ)
  1. Z= 4x + 7y x + 2y le 20, x + y le 15, x ge 0, y ge 0.

    Text Solution

    |

  2. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0 , y ge 0.

    Text Solution

    |

  3. Z = 6x + 11y 2x + y le 104, x + 2y le 76, x, y ge 0

    Text Solution

    |

  4. Z = 7x + 4y 2x + y le 10, x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  5. (i) Z = 20x + 10y x + 2y le 28, 3x + y le 24, x ge 2, x, y ge 0 (ii...

    Text Solution

    |

  6. Minimize (16-21): OBJECTIVE FUNCTION CONSTRAINTS Z = 200x + 500y ...

    Text Solution

    |

  7. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  8. Z = 3x + 5y x + 3y ge 3, x + y ge 2,x ge 0, y ge 0

    Text Solution

    |

  9. Z = 2x + 3y x ge 0, y ge 0, 1 le x + 2y le10

    Text Solution

    |

  10. Z = 3x + 9y x + 3y le 60, x + y ge 10, x le y , x ge 0, y ge 0

    Text Solution

    |

  11. Z = 5x + 10y x + y ge 60, x + 2y le 120, x -2y ge 0, x, y ge 0

    Text Solution

    |

  12. Maximize if possible: (i) Z = 3x + 2y subject to the constraints: x ...

    Text Solution

    |

  13. Maximize: Z = -x + 2y, subject to the constraints: x ge 3, x + y ...

    Text Solution

    |

  14. Maximize : Z = x + y,subject to the constraints: x - y le -1, -x +...

    Text Solution

    |

  15. Minimize and Maximize(25-29): OBJECTIVE FUNCTION CONSTRAINTS Z = ...

    Text Solution

    |

  16. Z = 5x + 10y x + 2y le 120, x + y ge 60, x - 2y ge 0, x ge 0 , y ge ...

    Text Solution

    |

  17. Z = 15x + 30y x + y le 8, 2x + y ge 8, x - 2y ge 0, x, y ge 0

    Text Solution

    |

  18. Z = x + 2y x + 2y ge 100, x - y le 0, 2x + y le 200, x, y ge 0

    Text Solution

    |

  19. (i)Z = 3x + 2y x + 3y le 60, x + y ge 10, x le y, x, y ge 0 (ii)Z = ...

    Text Solution

    |

  20. Consider the following LPP: Maximize Z = 3x + 2y subject to the cons...

    Text Solution

    |