Home
Class 12
MATHS
Z = x + 2y x + 2y ge 100, x - y le 0,...

`Z = x + 2y`
`x + 2y ge 100, x - y le 0, 2x + y le 200, x, y ge 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the linear programming problem, we need to maximize the objective function \( Z = x + 2y \) under the given constraints. Let's go through the solution step by step. ### Step 1: Identify the Constraints The constraints given are: 1. \( x + 2y \geq 100 \) 2. \( x - y \leq 0 \) (which can be rewritten as \( x \leq y \)) 3. \( 2x + y \leq 200 \) 4. \( x \geq 0 \) 5. \( y \geq 0 \) ### Step 2: Convert Inequalities to Equations To find the boundary lines, we convert the inequalities into equations: 1. \( x + 2y = 100 \) 2. \( x - y = 0 \) (or \( x = y \)) 3. \( 2x + y = 200 \) ### Step 3: Find Intercepts for Each Equation 1. For \( x + 2y = 100 \): - When \( x = 0 \): \( 2y = 100 \) → \( y = 50 \) (Point: \( (0, 50) \)) - When \( y = 0 \): \( x = 100 \) (Point: \( (100, 0) \)) 2. For \( x = y \): - This line passes through the origin and has a slope of 1. 3. For \( 2x + y = 200 \): - When \( x = 0 \): \( y = 200 \) (Point: \( (0, 200) \)) - When \( y = 0 \): \( 2x = 200 \) → \( x = 100 \) (Point: \( (100, 0) \)) ### Step 4: Plot the Constraints Now we will plot the lines on a graph: - The line \( x + 2y = 100 \) intersects the axes at \( (100, 0) \) and \( (0, 50) \). - The line \( x = y \) is a diagonal line through the origin. - The line \( 2x + y = 200 \) intersects the axes at \( (100, 0) \) and \( (0, 200) \). ### Step 5: Determine the Feasible Region The feasible region is where all the constraints overlap. We will check the area that satisfies all inequalities: - The area above the line \( x + 2y = 100 \) - The area below the line \( x = y \) - The area below the line \( 2x + y = 200 \) - The area in the first quadrant (where \( x \geq 0 \) and \( y \geq 0 \)) ### Step 6: Identify Corner Points The corner points of the feasible region can be found by solving the equations of the lines: 1. Intersection of \( x + 2y = 100 \) and \( x = y \): - Substitute \( y \) for \( x \): \( x + 2x = 100 \) → \( 3x = 100 \) → \( x = \frac{100}{3} \), \( y = \frac{100}{3} \) (Point: \( \left(\frac{100}{3}, \frac{100}{3}\right) \)) 2. Intersection of \( x + 2y = 100 \) and \( 2x + y = 200 \): - Solve the system: - From \( x + 2y = 100 \): \( y = \frac{100 - x}{2} \) - Substitute into \( 2x + y = 200 \): - \( 2x + \frac{100 - x}{2} = 200 \) - Multiply through by 2: \( 4x + 100 - x = 400 \) - \( 3x = 300 \) → \( x = 100 \), \( y = 0 \) (Point: \( (100, 0) \)) 3. Intersection of \( x = y \) and \( 2x + y = 200 \): - Substitute \( y \) for \( x \): \( 2x + x = 200 \) → \( 3x = 200 \) → \( x = \frac{200}{3} \), \( y = \frac{200}{3} \) (Point: \( \left(\frac{200}{3}, \frac{200}{3}\right) \)) ### Step 7: Evaluate the Objective Function at Each Corner Point Now we will evaluate \( Z = x + 2y \) at each corner point: 1. At \( (0, 50) \): \( Z = 0 + 2(50) = 100 \) 2. At \( (100, 0) \): \( Z = 100 + 2(0) = 100 \) 3. At \( \left(\frac{100}{3}, \frac{100}{3}\right) \): - \( Z = \frac{100}{3} + 2\left(\frac{100}{3}\right) = \frac{100}{3} + \frac{200}{3} = 100 \) 4. At \( \left(\frac{200}{3}, \frac{200}{3}\right) \): - \( Z = \frac{200}{3} + 2\left(\frac{200}{3}\right) = \frac{200}{3} + \frac{400}{3} = 200 \) ### Step 8: Determine Maximum and Minimum Values - The maximum value of \( Z \) is \( 200 \) at the point \( \left(\frac{200}{3}, \frac{200}{3}\right) \). - The minimum value of \( Z \) is \( 100 \) at the points \( (0, 50) \) and \( (100, 0) \). ### Final Solution - Maximum value of \( Z \) is \( 200 \) at \( \left(\frac{200}{3}, \frac{200}{3}\right) \). - Minimum value of \( Z \) is \( 100 \) at \( (0, 50) \) and \( (100, 0) \).
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (Long Answer Type Questions )|23 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (MULTIPLE CHOICE QUESTIONS)|12 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12(b) (Short Answer Type Questions)|5 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

x + 2y le 40, 2x + y le 40, x ge 0, y ge 0

3x + 2y le 14, 3x + y le 9, x,y ge 0

Minimize z = x + 2y , subject to x + 2y ge 50 , 2x - y le 0 , 2x + y le 100, x , y ge 0 .

y - 2x le 1, x + y le 2, x ge 0, y ge 0

x-y le 2, x + y le 4 , x ge 0, y ge

Z =3x + 2y x + 2y le 10, 3x + y le 15, x ge 0, y ge 0

x + 2y le 10, x + y ge 1, x-y le 0, x ge 0, yge 0

MODERN PUBLICATION-LINEAR PROGRAMMING -EXERCISE 12(b) (Long Answer Tyoe Questions(I)) (LATQ)
  1. Z= 4x + 7y x + 2y le 20, x + y le 15, x ge 0, y ge 0.

    Text Solution

    |

  2. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0 , y ge 0.

    Text Solution

    |

  3. Z = 6x + 11y 2x + y le 104, x + 2y le 76, x, y ge 0

    Text Solution

    |

  4. Z = 7x + 4y 2x + y le 10, x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  5. (i) Z = 20x + 10y x + 2y le 28, 3x + y le 24, x ge 2, x, y ge 0 (ii...

    Text Solution

    |

  6. Minimize (16-21): OBJECTIVE FUNCTION CONSTRAINTS Z = 200x + 500y ...

    Text Solution

    |

  7. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  8. Z = 3x + 5y x + 3y ge 3, x + y ge 2,x ge 0, y ge 0

    Text Solution

    |

  9. Z = 2x + 3y x ge 0, y ge 0, 1 le x + 2y le10

    Text Solution

    |

  10. Z = 3x + 9y x + 3y le 60, x + y ge 10, x le y , x ge 0, y ge 0

    Text Solution

    |

  11. Z = 5x + 10y x + y ge 60, x + 2y le 120, x -2y ge 0, x, y ge 0

    Text Solution

    |

  12. Maximize if possible: (i) Z = 3x + 2y subject to the constraints: x ...

    Text Solution

    |

  13. Maximize: Z = -x + 2y, subject to the constraints: x ge 3, x + y ...

    Text Solution

    |

  14. Maximize : Z = x + y,subject to the constraints: x - y le -1, -x +...

    Text Solution

    |

  15. Minimize and Maximize(25-29): OBJECTIVE FUNCTION CONSTRAINTS Z = ...

    Text Solution

    |

  16. Z = 5x + 10y x + 2y le 120, x + y ge 60, x - 2y ge 0, x ge 0 , y ge ...

    Text Solution

    |

  17. Z = 15x + 30y x + y le 8, 2x + y ge 8, x - 2y ge 0, x, y ge 0

    Text Solution

    |

  18. Z = x + 2y x + 2y ge 100, x - y le 0, 2x + y le 200, x, y ge 0

    Text Solution

    |

  19. (i)Z = 3x + 2y x + 3y le 60, x + y ge 10, x le y, x, y ge 0 (ii)Z = ...

    Text Solution

    |

  20. Consider the following LPP: Maximize Z = 3x + 2y subject to the cons...

    Text Solution

    |