Home
Class 12
MATHS
Consider the following LPP: Maximize Z...

Consider the following LPP:
Maximize `Z = 3x + 2y` subject to the constraints:
`x + 2y le 10, 3x + y le 15, x, y ge 0`.
(a) Draw the feasible region.
(b)Find the corner points of the feasible region.
(c) Find the maximum value of Z.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given Linear Programming Problem (LPP), we will follow the steps outlined in the question. ### Step 1: Identify the Objective Function and Constraints We need to maximize the objective function: \[ Z = 3x + 2y \] subject to the constraints: 1. \( x + 2y \leq 10 \) 2. \( 3x + y \leq 15 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) ### Step 2: Convert Inequalities to Equations To graph the constraints, we convert the inequalities into equations: 1. \( x + 2y = 10 \) 2. \( 3x + y = 15 \) ### Step 3: Find Intercepts for Each Constraint **For the first constraint \( x + 2y = 10 \):** - When \( x = 0 \): \[ 2y = 10 \implies y = 5 \] (Point: \( (0, 5) \)) - When \( y = 0 \): \[ x = 10 \] (Point: \( (10, 0) \)) **For the second constraint \( 3x + y = 15 \):** - When \( x = 0 \): \[ y = 15 \] (Point: \( (0, 15) \)) - When \( y = 0 \): \[ 3x = 15 \implies x = 5 \] (Point: \( (5, 0) \)) ### Step 4: Plot the Constraints on a Graph 1. Plot the points \( (0, 5) \) and \( (10, 0) \) for the first constraint. 2. Plot the points \( (0, 15) \) and \( (5, 0) \) for the second constraint. 3. Draw the lines for \( x + 2y = 10 \) and \( 3x + y = 15 \). 4. Shade the feasible region that satisfies all constraints, which lies in the first quadrant and below both lines. ### Step 5: Identify the Corner Points of the Feasible Region The corner points of the feasible region can be found at the intersections of the lines and the axes: 1. \( (0, 0) \) 2. \( (0, 5) \) 3. \( (5, 0) \) 4. Intersection of \( x + 2y = 10 \) and \( 3x + y = 15 \). **Finding the intersection:** - From \( x + 2y = 10 \) (1) - From \( 3x + y = 15 \) (2) Multiply (1) by 3: \[ 3x + 6y = 30 \] Now subtract (2) from this: \[ (3x + 6y) - (3x + y) = 30 - 15 \] This simplifies to: \[ 5y = 15 \implies y = 3 \] Substituting \( y = 3 \) back into (1): \[ x + 2(3) = 10 \implies x + 6 = 10 \implies x = 4 \] So, the intersection point is \( (4, 3) \). ### Step 6: List the Corner Points The corner points of the feasible region are: 1. \( (0, 0) \) 2. \( (0, 5) \) 3. \( (5, 0) \) 4. \( (4, 3) \) ### Step 7: Evaluate the Objective Function at Each Corner Point Now we calculate the value of \( Z \) at each corner point: 1. At \( (0, 0) \): \[ Z = 3(0) + 2(0) = 0 \] 2. At \( (0, 5) \): \[ Z = 3(0) + 2(5) = 10 \] 3. At \( (5, 0) \): \[ Z = 3(5) + 2(0) = 15 \] 4. At \( (4, 3) \): \[ Z = 3(4) + 2(3) = 12 + 6 = 18 \] ### Step 8: Determine the Maximum Value of Z The maximum value of \( Z \) occurs at the point \( (4, 3) \) where: \[ Z = 18 \] ### Conclusion The maximum value of \( Z \) is \( 18 \) at the corner point \( (4, 3) \). ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (Long Answer Type Questions )|23 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (MULTIPLE CHOICE QUESTIONS)|12 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12(b) (Short Answer Type Questions)|5 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

Maximize : Z = x + y ,subject to the constraints: x - y le -1, -x + y le 0, x ge 0, y ge 0

Minimize Z = 3x + 2y subject to the constraints : x + y ge 8, 3x + 5y le 15, x ge 0, y ge 0 .

Maximize Z = 5x + 3y subject to the constraints: 3x + 5y le 15, 5x + 2y le 10, x ge 0, y ge 0

Maximize z = 5x + 10y subject to constraints x + 2y le 10 , 3x + y le 12 , x ge 0 , y ge 0

Minimize Z = -3x + 4y subject ot constraints : x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0 .

Maximize z =2x + 3y subject to constraints x + 4y le 8, 3x + 2y le 14 , x ge 0, y ge 0 .

Maximize Z = 400x + 500y subject to constraints x + 2y le 80 ,2x + y le 90, x ge 0 , y ge 0

The maximum value of Z = 4x + 2y subject to the constraints 2x+3y le 18,x+y ge 10, x , y ge 0 is

Maximum Z = 3x + 5y subject to the constraints : x + 2y ge 10, x + y ge 6, 3x + y ge 8, x ge 0, y ge 0 .

Maximum of P=5x+3y subject to the constraints: x ge 0, y ge 0, 5x+2y le 10 is

MODERN PUBLICATION-LINEAR PROGRAMMING -EXERCISE 12(b) (Long Answer Tyoe Questions(I)) (LATQ)
  1. Z= 4x + 7y x + 2y le 20, x + y le 15, x ge 0, y ge 0.

    Text Solution

    |

  2. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0 , y ge 0.

    Text Solution

    |

  3. Z = 6x + 11y 2x + y le 104, x + 2y le 76, x, y ge 0

    Text Solution

    |

  4. Z = 7x + 4y 2x + y le 10, x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  5. (i) Z = 20x + 10y x + 2y le 28, 3x + y le 24, x ge 2, x, y ge 0 (ii...

    Text Solution

    |

  6. Minimize (16-21): OBJECTIVE FUNCTION CONSTRAINTS Z = 200x + 500y ...

    Text Solution

    |

  7. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  8. Z = 3x + 5y x + 3y ge 3, x + y ge 2,x ge 0, y ge 0

    Text Solution

    |

  9. Z = 2x + 3y x ge 0, y ge 0, 1 le x + 2y le10

    Text Solution

    |

  10. Z = 3x + 9y x + 3y le 60, x + y ge 10, x le y , x ge 0, y ge 0

    Text Solution

    |

  11. Z = 5x + 10y x + y ge 60, x + 2y le 120, x -2y ge 0, x, y ge 0

    Text Solution

    |

  12. Maximize if possible: (i) Z = 3x + 2y subject to the constraints: x ...

    Text Solution

    |

  13. Maximize: Z = -x + 2y, subject to the constraints: x ge 3, x + y ...

    Text Solution

    |

  14. Maximize : Z = x + y,subject to the constraints: x - y le -1, -x +...

    Text Solution

    |

  15. Minimize and Maximize(25-29): OBJECTIVE FUNCTION CONSTRAINTS Z = ...

    Text Solution

    |

  16. Z = 5x + 10y x + 2y le 120, x + y ge 60, x - 2y ge 0, x ge 0 , y ge ...

    Text Solution

    |

  17. Z = 15x + 30y x + y le 8, 2x + y ge 8, x - 2y ge 0, x, y ge 0

    Text Solution

    |

  18. Z = x + 2y x + 2y ge 100, x - y le 0, 2x + y le 200, x, y ge 0

    Text Solution

    |

  19. (i)Z = 3x + 2y x + 3y le 60, x + y ge 10, x le y, x, y ge 0 (ii)Z = ...

    Text Solution

    |

  20. Consider the following LPP: Maximize Z = 3x + 2y subject to the cons...

    Text Solution

    |