Home
Class 12
MATHS
Maximum of Z= 4x + y subject to: x + y...

Maximum of `Z= 4x + y` subject to:
`x + y le 50, 3x + y le 90, x ge 0, y ge 0 ` is ........at .........

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of maximizing \( Z = 4x + y \) subject to the given constraints, we will follow these steps: ### Step 1: Identify the Constraints The constraints given are: 1. \( x + y \leq 50 \) 2. \( 3x + y \leq 90 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) ### Step 2: Convert Constraints to Equations To find the boundary lines of the constraints, we convert the inequalities into equations: 1. \( x + y = 50 \) 2. \( 3x + y = 90 \) ### Step 3: Find Intercepts of Each Line - For \( x + y = 50 \): - When \( x = 0 \): \( y = 50 \) (Point: \( (0, 50) \)) - When \( y = 0 \): \( x = 50 \) (Point: \( (50, 0) \)) - For \( 3x + y = 90 \): - When \( x = 0 \): \( y = 90 \) (Point: \( (0, 90) \)) - When \( y = 0 \): \( x = 30 \) (Point: \( (30, 0) \)) ### Step 4: Find the Intersection of the Lines To find the intersection of the lines \( x + y = 50 \) and \( 3x + y = 90 \), we can solve the equations simultaneously: 1. From \( x + y = 50 \), we can express \( y \) as \( y = 50 - x \). 2. Substitute \( y \) in the second equation: \[ 3x + (50 - x) = 90 \implies 2x + 50 = 90 \implies 2x = 40 \implies x = 20 \] 3. Substitute \( x = 20 \) back into \( y = 50 - x \): \[ y = 50 - 20 = 30 \] Thus, the intersection point is \( (20, 30) \). ### Step 5: Determine the Feasible Region The feasible region is bounded by the lines and the axes. The vertices of the feasible region are: 1. \( (0, 50) \) 2. \( (50, 0) \) 3. \( (20, 30) \) 4. \( (30, 0) \) ### Step 6: Evaluate the Objective Function at Each Vertex Now, we will evaluate \( Z = 4x + y \) at each vertex: 1. At \( (0, 50) \): \[ Z = 4(0) + 50 = 50 \] 2. At \( (50, 0) \): \[ Z = 4(50) + 0 = 200 \] 3. At \( (20, 30) \): \[ Z = 4(20) + 30 = 80 + 30 = 110 \] 4. At \( (30, 0) \): \[ Z = 4(30) + 0 = 120 \] ### Step 7: Identify the Maximum Value From the evaluations: - \( Z(0, 50) = 50 \) - \( Z(50, 0) = 200 \) - \( Z(20, 30) = 110 \) - \( Z(30, 0) = 120 \) The maximum value of \( Z \) is \( 200 \) at the point \( (50, 0) \). ### Conclusion The maximum of \( Z = 4x + y \) subject to the given constraints is \( 200 \) at the point \( (50, 0) \). ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 (C ) (True/False Questions)|5 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 (C ) (Very Short Answer Type Questions)|15 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (MULTIPLE CHOICE QUESTIONS)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

x + 2y le 40, 2x + y le 40, x ge 0, y ge 0

3x + 4y le 60, x + 3y le 30, x ge 0, y ge 0

x-y le 2, x + y le 4 , x ge 0, y ge

2x + y le 6, x + 2y le 8, x ge 0, y ge 0

y - 2x le 1, x + y le 2, x ge 0, y ge 0

Z = 4x + y x + y le 50, 3x + y le 90, x ge 0, y ge 0

Maximum and Minimum of Z = 3x + 4y subject to 3x + 4y le 80, x + 3y le 30, x ge 0, y ge 0 are ..........and .............

Maximise Z = 5x + 3y subject to 3x + 5y le 15, 5x + 2y le 10, x ge 0, y ge 0 .

Maximize Z = 4x + y subject to : x + y le 50, x, y ge 0 .

Maximize Z = 4x + y subject to : x + y le 50, x, y ge 0 .