Home
Class 12
MATHS
Minimize Z= 3x + 2y subject to x + y le ...

Minimize `Z= 3x + 2y` subject to `x + y le 8, x, y ge 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of minimizing \( Z = 3x + 2y \) subject to the constraints \( x + y \leq 8 \) and \( x, y \geq 0 \), we will follow these steps: ### Step 1: Identify the constraints and plot them The constraints are: 1. \( x + y \leq 8 \) 2. \( x \geq 0 \) 3. \( y \geq 0 \) To plot the line \( x + y = 8 \): - When \( x = 0 \), \( y = 8 \) (Point B: \( (0, 8) \)) - When \( y = 0 \), \( x = 8 \) (Point A: \( (8, 0) \)) The feasible region is bounded by these points and the axes. ### Step 2: Identify the feasible region The feasible region is the area that satisfies all constraints. It is bounded by the points: - \( (0, 0) \) (origin) - \( (0, 8) \) (Point B) - \( (8, 0) \) (Point A) ### Step 3: Determine the corner points of the feasible region The corner points of the feasible region are: 1. \( (0, 0) \) 2. \( (0, 8) \) 3. \( (8, 0) \) ### Step 4: Evaluate the objective function at each corner point Now we will calculate \( Z = 3x + 2y \) at each corner point: 1. At \( (0, 0) \): \[ Z = 3(0) + 2(0) = 0 \] 2. At \( (0, 8) \): \[ Z = 3(0) + 2(8) = 16 \] 3. At \( (8, 0) \): \[ Z = 3(8) + 2(0) = 24 \] ### Step 5: Identify the minimum value of \( Z \) From the calculations: - \( Z(0, 0) = 0 \) - \( Z(0, 8) = 16 \) - \( Z(8, 0) = 24 \) The minimum value of \( Z \) occurs at the point \( (0, 0) \) and is \( Z = 0 \). ### Conclusion The minimum value of \( Z = 3x + 2y \) subject to the given constraints is \( \boxed{0} \). ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Exercise - 12.1|10 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Exercise 12.2|11 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 (C ) (True/False Questions)|5 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

Maximize Z = 4x + y subject to : x + y le 50, x, y ge 0 .

Maximize Z = 4x + y subject to : x + y le 30, x, y ge 0 .

Maximize Z = 4x + y subject to : x + y le 50, x, y ge 0 .

Minimise Z = -3x + 4y subject to x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0 .

(i) Maximize Z = 2x + 3y subject to : x + 2y le 6, x ge 4, y ge 0 (ii) Maximize Z = 4x + y subject to: x + y le 50, y ge 0 (iii) Maximize Z = x + 2y subject to: 2x + y le 6, x,y ge 0 (iv) Maximize Z = 3y + 5x subject to: 3x + 5y le 15, x, y ge 0 .

Maximize Z = x + 2y subject to x + y ge 5, x ge 0, y ge 0 is :

Maximize Z = x + 2y subject to x + y ge 5, x ge 0, y ge 0 .

Minimize Z= 3x + 9y subject to x + 3y le 60, x le y and x, y ge 0 .

Maximize Z= 3x + 2y subject x + y ge 8, x ge 0 , y ge 0 is :

Maximum of Z = 3x + 2y subject to: x + y ge 88, x, y ge 0 is .........at .....................