Home
Class 12
MATHS
Maximize Z= 4x + 45y subject to : x + ...

Maximize `Z= 4x + 45y` subject to :
`x + y le 300, 2x + 3y le 7, x, y ge 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of maximizing \( Z = 4x + 45y \) subject to the constraints: 1. \( x + y \leq 300 \) 2. \( 2x + 3y \leq 7 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) we will follow these steps: ### Step 1: Identify the Constraints We have the following constraints: - \( x + y \leq 300 \) - \( 2x + 3y \leq 7 \) - \( x \geq 0 \) - \( y \geq 0 \) ### Step 2: Convert Inequalities to Equations To graph the constraints, we convert the inequalities into equations: 1. \( x + y = 300 \) 2. \( 2x + 3y = 7 \) ### Step 3: Find Intercepts For the first equation \( x + y = 300 \): - When \( x = 0 \), \( y = 300 \) (Point A: \( (0, 300) \)) - When \( y = 0 \), \( x = 300 \) (Point B: \( (300, 0) \)) For the second equation \( 2x + 3y = 7 \): - When \( x = 0 \), \( y = \frac{7}{3} \approx 2.33 \) (Point C: \( (0, \frac{7}{3}) \)) - When \( y = 0 \), \( x = \frac{7}{2} = 3.5 \) (Point D: \( (\frac{7}{2}, 0) \)) ### Step 4: Graph the Constraints Plot the points on a graph: - Draw the line for \( x + y = 300 \) through points A and B. - Draw the line for \( 2x + 3y = 7 \) through points C and D. ### Step 5: Identify the Feasible Region The feasible region is where all constraints overlap, which will be in the first quadrant (since \( x \geq 0 \) and \( y \geq 0 \)). ### Step 6: Find the Corner Points of the Feasible Region The corner points of the feasible region can be found by solving the equations: 1. Intersection of \( x + y = 300 \) and \( 2x + 3y = 7 \). To find the intersection: - From \( x + y = 300 \), we can express \( y = 300 - x \). - Substitute into \( 2x + 3(300 - x) = 7 \): \[ 2x + 900 - 3x = 7 \\ -x + 900 = 7 \\ x = 893 \] This value is not valid since it exceeds the constraint \( x + y \leq 300 \). Next, check the corner points: 1. \( (0, 0) \) 2. \( (0, \frac{7}{3}) \) 3. \( (\frac{7}{2}, 0) \) ### Step 7: Evaluate the Objective Function at Each Corner Point Now we evaluate \( Z = 4x + 45y \) at each corner point: 1. At \( (0, 0) \): \[ Z = 4(0) + 45(0) = 0 \] 2. At \( (0, \frac{7}{3}) \): \[ Z = 4(0) + 45\left(\frac{7}{3}\right) = 0 + 105 = 105 \] 3. At \( (\frac{7}{2}, 0) \): \[ Z = 4\left(\frac{7}{2}\right) + 45(0) = 14 + 0 = 14 \] ### Step 8: Determine the Maximum Value The maximum value of \( Z \) occurs at the point \( (0, \frac{7}{3}) \) with \( Z = 105 \). ### Final Answer The maximum value of \( Z \) is \( \boxed{105} \) at the point \( (0, \frac{7}{3}) \). ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Exercise - 12.1|10 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Exercise 12.2|11 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 (C ) (True/False Questions)|5 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

Maximize Z = 4x + y subject to : x + y le 30, x, y ge 0 .

Maximize Z = 4x + y subject to : x + y le 50, x, y ge 0 .

Maximize Z = 4x + y subject to : x + y le 50, x, y ge 0 .

Maximize z = 4x + 6 y ,subject to 3x + 2y le 12, x + y ge 4, x ge 0 , y ge 0

Maximize z = 4 x + 5y , subject to 2x + y ge7, 2x + 3 y le 15, x le 3, x ge 0 , y ge 0

Maximize z = 6 x + 4y , subject to 2x + 3y le 30, 3x + 2y le 24, x + y ge 3, x ge 0 , y ge0.

Maximum of Z= 4x + y subject to: x + y le 50, 3x + y le 90, x ge 0, y ge 0 is ........at .........

Maximize Z= 5x + 3y subject to 3x + 5y le 10, x, y ge 10 .

Maximize Z = x + 2y subject to : x + y ge 5, x ge 0, y ge 0 .

Maximize Z = x + 2y subject to: 2x + y ge 3, x + 2y ge 6, x, y ge 0 .