Home
Class 12
MATHS
Maximize Z = x + 2y subject to: 2x + y ...

Maximize `Z = x + 2y` subject to:
`2x + y ge 3, x + 2y ge 6, x, y ge 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of maximizing \( Z = x + 2y \) subject to the constraints \( 2x + y \geq 3 \), \( x + 2y \geq 6 \), and \( x, y \geq 0 \), we will follow these steps: ### Step 1: Identify the Constraints The constraints are: 1. \( 2x + y \geq 3 \) 2. \( x + 2y \geq 6 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \)
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Exercise - 12.1|10 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Exercise 12.2|11 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 (C ) (True/False Questions)|5 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

Maximize Z = x + 2y subject to : x + y ge 5, x ge 0, y ge 0 .

Maximize Z = x + 2y subject to x + y ge 5, x ge 0, y ge 0 .

Maximize Z = x + 2y subject to x + y ge 5, x ge 0, y ge 0 is :

Maximize Z = 4x + y subject to : x + y le 30, x, y ge 0 .

Maximize Z = 5x + 3y subject to 2x + 5y le 10, x , y ge 0 .

Maximize Z = 4x + y subject to : x + y le 50, x, y ge 0 .

Maximize Z = 4x + y subject to : x + y le 50, x, y ge 0 .

Minimum of Z = x+ y subject to : 2x + y ge 3, x + 2y ge 6, x ge 0, y ge 0 is .........at ............

2x + y ge 6, x + 2y ge 8, x ge 0, y ge 0

Minimise and Maximise Z = 5x + 10y subject to x + 2y le 120, x + y ge 60, x - 2y ge 0, x, y ge 0 .