Home
Class 12
MATHS
Minimize Z= 3x + 9y subject to x + 3y l...

Minimize `Z= 3x + 9y` subject to ` x + 3y le 60, x le y `and `x, y ge 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the linear programming problem of minimizing \( Z = 3x + 9y \) subject to the constraints \( x + 3y \leq 60 \), \( x \leq y \), and \( x, y \geq 0 \), we will follow these steps: ### Step 1: Identify the Constraints The constraints given are: 1. \( x + 3y \leq 60 \) 2. \( x \leq y \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) ### Step 2: Convert Inequalities to Equations To find the boundary lines of the feasible region, we convert the inequalities into equations: 1. \( x + 3y = 60 \) 2. \( x - y = 0 \) or \( x = y \) ### Step 3: Find Points of Intersection Next, we find the points where these lines intersect with each other and the axes. 1. **Finding the intersection of \( x + 3y = 60 \) and \( x = y \)**: Substitute \( x = y \) into \( x + 3y = 60 \): \[ y + 3y = 60 \implies 4y = 60 \implies y = 15 \implies x = 15 \] So, one intersection point is \( (15, 15) \). 2. **Finding the x-intercept of \( x + 3y = 60 \)**: Set \( y = 0 \): \[ x + 3(0) = 60 \implies x = 60 \] So, the x-intercept is \( (60, 0) \). 3. **Finding the y-intercept of \( x + 3y = 60 \)**: Set \( x = 0 \): \[ 0 + 3y = 60 \implies y = 20 \] So, the y-intercept is \( (0, 20) \). ### Step 4: Identify the Feasible Region The feasible region is bounded by: - The line \( x + 3y = 60 \) - The line \( x = y \) - The axes \( x = 0 \) and \( y = 0 \) The vertices of the feasible region are: 1. \( (0, 0) \) 2. \( (0, 20) \) 3. \( (15, 15) \) ### Step 5: Evaluate the Objective Function at Each Vertex Now, we calculate \( Z = 3x + 9y \) at each vertex: 1. At \( (0, 0) \): \[ Z = 3(0) + 9(0) = 0 \] 2. At \( (0, 20) \): \[ Z = 3(0) + 9(20) = 180 \] 3. At \( (15, 15) \): \[ Z = 3(15) + 9(15) = 45 + 135 = 180 \] ### Step 6: Determine the Minimum Value From the values calculated: - At \( (0, 0) \), \( Z = 0 \) - At \( (0, 20) \), \( Z = 180 \) - At \( (15, 15) \), \( Z = 180 \) The minimum value of \( Z \) occurs at the point \( (0, 0) \). ### Conclusion Thus, the minimum value of \( Z \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Exercise - 12.1|10 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Exercise 12.2|11 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 (C ) (True/False Questions)|5 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

Minimize Z = 3x + 9y subject to: x + 3y le 60, x le y and x, y le 0 .

Minimize Z= 3x + 2y subject to x + y le 8, x, y ge 0 .

Maximize Z = 4x + y subject to : x + y le 50, x, y ge 0 .

Maximize Z = 4x + y subject to : x + y le 30, x, y ge 0 .

Maximize Z = 4x + y subject to : x + y le 50, x, y ge 0 .

Maximise Z= 3x + 2y subject to x + 2y le 10, 3x + y le 15, x, y ge 0 .

Maximize Z= 4x + 45y subject to : x + y le 300, 2x + 3y le 7, x, y ge 0 .

Maximize X = 8x + 9y Subject to 2x + 3y le 6 3x - 2y le 6 y le 1 x, y ge 0

3x + 4y le 60, x ge 2y , x ge1 , y ge 0