Home
Class 12
MATHS
Minimise Z = -3x + 4y subject to x +...

Minimise ` Z = -3x + 4y`
subject to ` x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the linear programming problem of minimizing \( Z = -3x + 4y \) subject to the constraints: 1. \( x + 2y \leq 8 \) 2. \( 3x + 2y \leq 12 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) we will follow these steps: ### Step 1: Identify the Constraints We have the following inequalities: - \( x + 2y \leq 8 \) - \( 3x + 2y \leq 12 \) - \( x \geq 0 \) - \( y \geq 0 \) ### Step 2: Convert Inequalities to Equations To find the boundary lines, we convert the inequalities into equations: 1. \( x + 2y = 8 \) 2. \( 3x + 2y = 12 \) ### Step 3: Find Intercepts For each equation, we find the x-intercept and y-intercept. **For \( x + 2y = 8 \):** - Setting \( y = 0 \): \( x = 8 \) (x-intercept: (8, 0)) - Setting \( x = 0 \): \( 2y = 8 \) → \( y = 4 \) (y-intercept: (0, 4)) **For \( 3x + 2y = 12 \):** - Setting \( y = 0 \): \( 3x = 12 \) → \( x = 4 \) (x-intercept: (4, 0)) - Setting \( x = 0 \): \( 2y = 12 \) → \( y = 6 \) (y-intercept: (0, 6)) ### Step 4: Plot the Lines Now, we plot the lines on a graph: - Line 1: Connect points (8, 0) and (0, 4). - Line 2: Connect points (4, 0) and (0, 6). ### Step 5: Determine Feasible Region The feasible region is where all the inequalities overlap. Since \( x \geq 0 \) and \( y \geq 0 \), we only consider the first quadrant. ### Step 6: Identify Corner Points The corner points of the feasible region can be found by solving the equations: 1. Intersection of \( x + 2y = 8 \) and \( 3x + 2y = 12 \): - Subtract the first from the second: \[ (3x + 2y) - (x + 2y) = 12 - 8 \implies 2x = 4 \implies x = 2 \] Substitute \( x = 2 \) into \( x + 2y = 8 \): \[ 2 + 2y = 8 \implies 2y = 6 \implies y = 3 \] So, one corner point is \( (2, 3) \). 2. Intersection of \( x + 2y = 8 \) with axes gives points \( (8, 0) \) and \( (0, 4) \). 3. Intersection of \( 3x + 2y = 12 \) with axes gives points \( (4, 0) \) and \( (0, 6) \). ### Step 7: Evaluate the Objective Function at Corner Points Now we evaluate \( Z = -3x + 4y \) at each corner point: 1. At \( (2, 3) \): \[ Z = -3(2) + 4(3) = -6 + 12 = 6 \] 2. At \( (8, 0) \): \[ Z = -3(8) + 4(0) = -24 + 0 = -24 \] 3. At \( (4, 0) \): \[ Z = -3(4) + 4(0) = -12 + 0 = -12 \] 4. At \( (0, 4) \): \[ Z = -3(0) + 4(4) = 0 + 16 = 16 \] ### Step 8: Determine Minimum Value The minimum value of \( Z \) occurs at the point \( (8, 0) \) with \( Z = -24 \). ### Conclusion The minimum value of \( Z = -3x + 4y \) subject to the given constraints is \( -24 \) at the point \( (8, 0) \). ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Exercise 12.2|11 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Miscellaneous Exercise|10 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 (C ) (Very Short Answer Type Questions)|15 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

x + 2y le 3, 3x + 4y ge 12, x ge 0, y ge 1

2x + y le 6, x + 2y le 8, x ge 0, y ge 0

x +2y le 3, 3x + 4y ge 12 , x ge 0, y ge 1

Minimize Z = -3x + 4y subject ot constraints : x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0 .

Maximise Z = 5x + 3y subject to 3x + 5y le 15, 5x + 2y le 10, x ge 0, y ge 0 .

Maximise Z= 3x + 2y subject to x + 2y le 10, 3x + y le 15, x, y ge 0 .

3x + 4y le 60, x + 3y le 30, x ge 0, y ge 0

Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0 , y ge 0 .

Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0

Maximum and Minimum of Z = 3x + 4y subject to 3x + 4y le 80, x + 3y le 30, x ge 0, y ge 0 are ..........and .............