Home
Class 12
MATHS
The corner points of the feasible region...

The corner points of the feasible region determined by the following system of linear inequalities:
`2x+yge10, x+3yle15,x,yge0` are `(0,0),(5,0),(3,4)` and `(0,5)`. Let `Z=px+qy`, where `p,qge0`. Condition on `p` and `q` so that the maximum of `Z` occurs at both `(3,4)` and `(0,5)` is:

A

p = q

B

p = 2q

C

p = 3q

D

q = 3p

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Miscellaneous Exercise|10 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|2 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Exercise - 12.1|10 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

The carner points of the feasible region formed by the system of linear inequations x-yge-1,-x+yge0,x+yle2andx,yge0 , are

The corner points of the feasible region of the system of linear inequations x+yge2,x+yle5,x-yge0,x,yge0 are :

The corner points of the feasible region determined by the system of linear constraints are (0, 10), (5, 5) (15, 15), (0, 20). Let Z = px + qy , where p,q gt 0 . Then, the condition on p and q so that the maximum of Z occurs at both the points (15, 15) and (0, 20), is

the corner points of the feasible region of a system of linear inequalities 3x + 5y le 15, 5x + 2y ge 10, x ge 0, y ge 0 , are:

For an objective function Z = ax + by," where "a,b gt 0, the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20), (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum Z occurs at both the points (30, 30) and (0, 40) is:

The corner points of the feasible region determined by the system of linear constraints are (0,10) , (5,5) (25,20),(0,30) Let z = px + qy , where p,qgt0 Condition on p and q so that te maximum of z occurs at both the points (25,20 ) and (0,30) is ………

For an objective function Z = ax + by, where a, bgt0 , the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20). (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum z occurs at both the points (30, 30) and (0, 40) is:

The corner points of a feasible region determined by a system of linear inequalities are (20,40),(50,100),(0,200) and (0,50). If the objective funtion Z=x+2y , then maximum of Z occurs at.

The vertex of the linear inequalities 2x+3yle6, x+4yle4,xge0,yge0 is

Corner poins of the feasible region determned by the system of linear constrainsts are (0,3), (1,1), and (3,0). Let Z=px+qy. Where p, q lt 0 Condition on p and q, so that the minimum of Z occurs at (3,0) and (1,1) is