Home
Class 12
MATHS
Maximum Z = 3x + 5y subject to the const...

Maximum `Z = 3x + 5y` subject to the constraints : `x + 2y ge 10, x + y ge 6, 3x + y ge 8, x ge 0, y ge 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given linear programming problem, we need to maximize the objective function \( Z = 3x + 5y \) subject to the constraints: 1. \( x + 2y \geq 10 \) 2. \( x + y \geq 6 \) 3. \( 3x + y \geq 8 \) 4. \( x \geq 0 \) 5. \( y \geq 0 \) ### Step-by-Step Solution **Step 1: Convert inequalities to equations** We will first convert the inequalities into equations to find the boundary lines. 1. \( x + 2y = 10 \) 2. \( x + y = 6 \) 3. \( 3x + y = 8 \) **Step 2: Find intercepts for each equation** - For \( x + 2y = 10 \): - When \( x = 0 \): \( 2y = 10 \) → \( y = 5 \) (Point: \( (0, 5) \)) - When \( y = 0 \): \( x = 10 \) (Point: \( (10, 0) \)) - For \( x + y = 6 \): - When \( x = 0 \): \( y = 6 \) (Point: \( (0, 6) \)) - When \( y = 0 \): \( x = 6 \) (Point: \( (6, 0) \)) - For \( 3x + y = 8 \): - When \( x = 0 \): \( y = 8 \) (Point: \( (0, 8) \)) - When \( y = 0 \): \( 3x = 8 \) → \( x = \frac{8}{3} \approx 2.67 \) (Point: \( \left(\frac{8}{3}, 0\right) \)) **Step 3: Graph the constraints** Now, we will graph the lines based on the intercepts we calculated. 1. The line \( x + 2y = 10 \) intersects at \( (0, 5) \) and \( (10, 0) \). 2. The line \( x + y = 6 \) intersects at \( (0, 6) \) and \( (6, 0) \). 3. The line \( 3x + y = 8 \) intersects at \( (0, 8) \) and \( \left(\frac{8}{3}, 0\right) \). **Step 4: Identify the feasible region** The feasible region is the area where all the constraints overlap. Since all inequalities are of the form "greater than or equal to," the feasible region will be above the lines. **Step 5: Find the corner points of the feasible region** To find the corner points, we need to solve the equations pairwise: 1. Intersection of \( x + 2y = 10 \) and \( x + y = 6 \): - From \( x + y = 6 \), we can express \( x = 6 - y \). - Substitute into \( x + 2y = 10 \): \[ (6 - y) + 2y = 10 \Rightarrow 6 + y = 10 \Rightarrow y = 4 \] Then, \( x = 6 - 4 = 2 \) (Point: \( (2, 4) \)) 2. Intersection of \( x + 2y = 10 \) and \( 3x + y = 8 \): - From \( x + 2y = 10 \), express \( y = \frac{10 - x}{2} \). - Substitute into \( 3x + y = 8 \): \[ 3x + \frac{10 - x}{2} = 8 \Rightarrow 6x + 10 - x = 16 \Rightarrow 5x = 6 \Rightarrow x = \frac{6}{5} \] Then, \( y = \frac{10 - \frac{6}{5}}{2} = \frac{10 - 1.2}{2} = \frac{8.8}{2} = 4.4 \) (Point: \( \left(\frac{6}{5}, 4.4\right) \)) 3. Intersection of \( x + y = 6 \) and \( 3x + y = 8 \): - From \( x + y = 6 \), express \( y = 6 - x \). - Substitute into \( 3x + y = 8 \): \[ 3x + (6 - x) = 8 \Rightarrow 2x + 6 = 8 \Rightarrow 2x = 2 \Rightarrow x = 1 \] Then, \( y = 6 - 1 = 5 \) (Point: \( (1, 5) \)) **Step 6: Evaluate the objective function at each corner point** Now we evaluate \( Z = 3x + 5y \) at each corner point: 1. At \( (2, 4) \): \[ Z = 3(2) + 5(4) = 6 + 20 = 26 \] 2. At \( \left(\frac{6}{5}, 4.4\right) \): \[ Z = 3\left(\frac{6}{5}\right) + 5(4.4) = \frac{18}{5} + 22 = \frac{18 + 110}{5} = \frac{128}{5} = 25.6 \] 3. At \( (1, 5) \): \[ Z = 3(1) + 5(5) = 3 + 25 = 28 \] **Step 7: Determine the maximum value** The maximum value of \( Z \) occurs at the point \( (1, 5) \) with \( Z = 28 \). ### Final Answer The maximum value of \( Z \) is **28** at the point **(1, 5)**.
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Revision Exercise|17 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Check your understanding|10 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Miscellaneous Exercise|10 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

2x + y ge 6, x + 2y ge 8, x ge 0, y ge 0

Solve the LPP graphically: Minimize Z = 4x + 5y Subject to the constraints 5x + y ge 10, x + y ge 6, x + 4y ge 12, x , y ge 0

Minimize Z = 2x + 3y subject to constraints x + y ge 6 , 2x + y ge 7, x + 4y ge 8 , x ge 0 , y ge 0

Maximize : Z = x + y ,subject to the constraints: x - y le -1, -x + y le 0, x ge 0, y ge 0

Minimize Z = 3x + 2y subject to the constraints : x + y ge 8, 3x + 5y le 15, x ge 0, y ge 0 .

Maximize: Z = -x + 2y , subject to the constraints: x ge 3, x + y ge 5, x + 2y ge 6, y ge 0 .

Maximise Z= -x + 2y , subject to the constraints: x ge 3, x + y ge 5, x + 2y ge 6, y ge 0 .

Maximise and Minimise : Z = 4x + 3y -7 subject to the constraints: x + y le 10, x + y ge 3, x le 8, y le 9, x, y ge 0

3x + 4y le 60, x ge 2y , x ge1 , y ge 0

Maximize Z = 5x + 3y subject to the constraints: 3x + 5y le 15, 5x + 2y le 10, x ge 0, y ge 0