Home
Class 12
MATHS
Evaluate 1+i^2+i^4+i^6+...+i^(2n)dot...

Evaluate `1+i^2+i^4+i^6+...+i^(2n)dot`

A

positive

B

negative

C

`0`

D

cannot be evaluated

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Multiple Choice Questions (Level-II)|58 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Latest Questions from AJEE/JEE examinations|10 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MODERN PUBLICATION|Exercise Recent Competitive Questions (RCQs)|12 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

1+i^(2)+i^(4)+i^(6)+... .+i^(2 n)=

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N .

Evaluate (i) ┌1 (ii) ┌2

Evaluate (1+i)^(6) + (1-i)^(3)

Evaluate. (i) i^(1998) (ii) i^(-9999) (iii) (-sqrt-1)^(4n+3) ,n ne N

i^(2)+i^(4)+i^(6)+ldots . .(2 n+1) terms =

If A^(n) = 0 , then evaluate (i) I+A+A^(2)+A^(3)+…+A^(n-1) (ii) I-A + A^(2) - A^(3) +... + (-1) ^(n-1) for odd 'n' where I is the identity matrix having the same order of A.

If n is any positive integer then the value of (i^(4 n+1)-i^(4 m-1))/(2)=

Conjugate of (1+2 i)(2-3 i) is