Home
Class 12
MATHS
If (1-ialpha)/(1+ialpha)=A+iB, then A^(2...

If `(1-ialpha)/(1+ialpha)=A+iB`, then `A^(2)+B^(2)` is :

A

`1`

B

`alpha^(2)`

C

`-1`

D

`-alpha^(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Multiple Choice Questions (Level-II)|58 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Latest Questions from AJEE/JEE examinations|10 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MODERN PUBLICATION|Exercise Recent Competitive Questions (RCQs)|12 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

If ((1-i)/(1+i))^(96)=a+ib , then (a,b) is

If ((1-i)/(1+i))^(96)=a+ib , then (a,b) is

If x+iy = (a+ib)/(a-ib) , prove that x^(2) + y^(2)=1 .

If (x+iy) =(a+ib)/(a-ib) prove that (x^(2) +y^(2)) = 1 ?

If (a+ib)(c+id)(e+if)(g+ih) = A + iB , then show that (a^(2) + b^(2))(c^(2) + d^(2))(e^(2) + f^(2)) (g^(2) + h^(2)) = A^(2) + B^(2)

If x+iy=(a+ib)/(a-ib) , prove that x^(2)+y^(2)=1

(ii) If x + iy =(a+ib)/(a-ib) prove that x^(2) + y^(2)=1

If a+ib =(x+i)^(2)/(2x^(2)+1) , prove that a^(2) + b^(2) =(x^(2)+1)^(2)/(2x^(2) +1)^(2) .

If a+ib =(x+i)^(2)/(2x^(2)+1) , prove that a^(2) + b^(2) =(x^(2)+1)^(2)/(2x^(2) +1)^(2) .

If a+ib = (x+i)^(2)/(2x^(2)+1) , prove that a^(2) + b^(2) = (x^(2)+1)^(2)/(2x^(2) + 1)^(2)