Home
Class 12
MATHS
If arg(z) lt 0, then find arg(-z) -ar...

If ` arg(z) lt 0, ` then find ` arg(-z) -arg(z)`.

A

`pi`

B

`-pi`

C

`-(pi)/(2)`

D

`(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Multiple Choice Questions (Level-II)|58 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Latest Questions from AJEE/JEE examinations|10 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MODERN PUBLICATION|Exercise Recent Competitive Questions (RCQs)|12 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

If arg (z)lttheta , then arg (-z)-arg (z)=

If z is a complex number of unit modulus and argument theta , then arg((1+z)/(1+barz)) equals

If z ne 0 and Re z=0 then

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find z_(1)+z_(2) .

If |z_(1)| = 1, |z_(2)| =2, |z_(3)|=3, and |9z_(1)z_(2) + 4z_(1)z_(3)+ z_(2)z_(3)|= 12 , then find the value of |z_(1) + z_(2) + z_(3)| .

If z ne 0 and arg z=(pi)/(4) , then

Let z and w be two non-zero complex numbers such that |z|=|w| and arg. (z)+ arg. (w)=pi . Then z equals :

If z_(1) and z_(2) are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| , then arg. z_(1)- arg. z_(2) equals :

If z=-1 , the principal value of arg. (z^(2//3)) is equal to :

If z=(-2)/(1+sqrt(3) i) , then the value of arg z is