Home
Class 12
MATHS
If |z^(2)-1|=|z|^(2)+1, then z lies on :...

If `|z^(2)-1|=|z|^(2)+1`, then `z` lies on :

A

the real axis

B

the imaginary axis

C

a circle

D

an ellipse

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Multiple Choice Questions (Level-II)|58 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Latest Questions from AJEE/JEE examinations|10 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MODERN PUBLICATION|Exercise Recent Competitive Questions (RCQs)|12 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

If |z+bar(z)|+|z-bar(z)|=8 then z lies on

If |z_(1)+z_(2)|=|z_(1)-z_(2)| , then the difference of the arguments of z_(1) and z_(2) is

If |z_(1)|=|z_(2)|=|z_(3)|=|z_(4)| , then the points representing z_(1),z_(2),z_(3),z_(4) are :

Points z in the complex plane satisfying Re(z+1)^(2)=|z|^(2)+1 lies on

If w=(z)/(z-(1)/(3)i) and |w|=1 , then z lies on

If |z_(1)-1|lt2,|z_(2)-2|lt1 , then |z_(1)+z_(2)|

If the complex number z=x+ iy satisfies the condition |z+1|=1 , then z lies on

If z=(-2)/(1+sqrt(3) i) , then the value of arg z is

If omega=(z)/(z-(i)(3)) and |omega|=1 , the z lies on

If |z_(1)|=|z_(2)|=…... .=|z_(n)|=1 then |z_(1)+z_(2)+ .+z_(n)|=