Home
Class 12
MATHS
If alpha!= beta but alpha^2 = 5alpha-3, ...

If `alpha!= beta` but `alpha^2 = 5alpha-3, beta^2 = 5beta - 3`, then find the equation whose roots are `alpha/beta and beta/alpha`.

A

`x^(2) - 5x - 3 = 0`

B

`3x^(2) - 19x + 3 = 0`

C

`3x^(2) + 12x + 3 = 0 `

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (LEVEL-II)|61 Videos
  • QUADRATIC EQUATIONS

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|13 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS (QUESTIONS FROM KARNATAKA CET & COMED )|11 Videos
  • REAL NUMBERS

    MODERN PUBLICATION|Exercise Multiple Choice Questions (Level-II)|8 Videos

Similar Questions

Explore conceptually related problems

If alpha ne beta and alpha^(2) = 5 alpha - 3, beta^(2) = 5 beta - 3 , then the equation having alpha//beta and beta/alpha as its roots, is :

If alpha, beta are the roots of a x^(2)+b x+c=0 the equation whose roots are alpha+(1)/(beta) and beta+(1)/(alpha) is

If alpha, beta are the roots of the equation x^(2)+x+1=0 , then the equation whose roots are (alpha)/(beta) and (beta)/(alpha) is

Let alpha, beta be the roots of x^(2)+a x+1=0 . Then the equation whose roots are – (alpha+(1)/(beta)) and -(beta+(1)/(alpha))

Let alpha, beta be the roots of x^(2)+x+1=0 . The equation whose roots are alpha^(25) and beta^(22) .

If alpha , beta are the roots of 2 x^(2)-x+7=0 then the equation whose roots are 2-3 alpha and 2-3 beta is

If alpha, beta be the roots of the equation x^2-px+q=0 then find the equation whose roots are q/(p-alpha) and q/(p-beta)

If alpha and beta are the rotos of a x^(2)+b x+c=0 the equation whose roots are 2+alpha and 2+beta is

If [{:(2alpha+1," "3beta),(0,beta^(2)-5beta):}]=[{:(beta+3,beta^(2)+2),(0,-6):}] find the equation whose roots are alpha and beta.

If alpha and beta are the roots of the equation 2x^2-3x + 4=0 , then the equation whose roots are alpha^2 and beta^2, is