Home
Class 12
MATHS
If x=|alpha+beta|, y=|alpha|+|beta|, z=|...

If `x=|alpha+beta|, y=|alpha|+|beta|, z=|alpha-beta|`, then :

A

x = Max. (y, z)

B

y = Max. (x, z)

C

z = Max. (x, y)

D

y = Min. (x, z)

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • REAL NUMBERS

    MODERN PUBLICATION|Exercise Multiple Choice Questions (Level-II)|8 Videos
  • QUADRATIC EQUATIONS

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|13 Videos
  • RELATIONS

    MODERN PUBLICATION|Exercise RCQS|6 Videos

Similar Questions

Explore conceptually related problems

Let p and q be real numbers such that p ne 0 , p^(3) ne q and p^(3) ne - q. if alpha and beta are non-zero complex numbers satisfying alpha + beta = -p and alpha^(3) + beta^(3) = q, then a quadratic equation having (alpha)/(beta ) and (beta)/(alpha) as its roots is :

Evaluate {:|( cos alpha cos beta , cos alpha sin beta , -sin alpha ),( -sin beta , cos beta, 0),( sin alpha cos beta, sin alpha sin beta, cos alpha ) |:} =1

Knowledge Check

  • If |vec alpha + vec beta |=| vec alpha - vec beta|, then :

    A
    `vecalpha ` is parallel to `vecbeta`
    B
    `vec alpha bot vec beta`
    C
    `|vecalpha | = |vec beta|`
    D
    None of these.
  • If sin(alpha + beta) = 1 , sin(alpha - beta) = 1/2 , then : tan(alpha + 2beta)tan(2alpha + beta) is equal to :

    A
    1
    B
    `-1`
    C
    zero
    D
    None of these.
  • If cos(alpha - beta) = 1 and cos(alpha + beta) = 1/e , then the number of ordered pairs (alpha,beta) such that alpha,beta in [-pi,pi] is :

    A
    0
    B
    1
    C
    2
    D
    4
  • Similar Questions

    Explore conceptually related problems

    If alpha and beta are two nonzero and different vectors such that |vec alpha + vec beta| = |vec beta - vec alpha| then the angle between the vectors vec alpha and vec beta is

    Let f (x)=a x^(2)+b x+c , a ne 0 and Delta=b^(2)-4 a c . If alpha+beta, alpha^(2)+beta^(2) and alpha^(3)+beta^(3) are in G.P, then

    A real value of x satisfies the equation (3-4 i x)/(3+4 i x)=alpha-i beta (alpha, beta in R) , if alpha^(2)+beta^(2)=

    If alpha ne beta and alpha^(2) = 5 alpha - 3, beta^(2) = 5 beta - 3 , then the equation having alpha//beta and beta/alpha as its roots, is :

    If alpha, beta are roots of ax^(2) + bx + c =0 , a cancel(=) 0 and alpha + beta, alpha^(2) + beta^(2) , alpha^(3) + beta^(3) are in G.P. and delta be the discriminant, then :