Home
Class 12
MATHS
If the equations ax + by = 1 and cx^2 +d...

If the equations `ax + by = 1` and `cx^2 +dy^2=1` have only one solution, prove that `a^2/c+ b^2/d = 1` and `x=a/c`,`y=b/d`

A

`(a^(2))/(c) + (b^(2))/(d) = 1`

B

`x = - (a)/(c) `

C

` y = (b)/(d)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (LEVEL-II)|61 Videos
  • QUADRATIC EQUATIONS

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|13 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS (QUESTIONS FROM KARNATAKA CET & COMED )|11 Videos
  • REAL NUMBERS

    MODERN PUBLICATION|Exercise Multiple Choice Questions (Level-II)|8 Videos

Similar Questions

Explore conceptually related problems

If the equations x^(2)+b^(2)=1-2b x and x^(2)+a^(2)=1-2 a x have one and only one root common then |a-b|=

If the equation : x^(2 ) + 2x +3=0 and ax^(2) +bx+ c=0 a,b,c in R have a common root then a: b: c is :

If the equations : x^(2) + 2x + 3 = 0 and ax^(2) + bx + c =0 a, b,c in R, Have a common root, then a: b : c is :

If the roots of the equations (b-c) x^(2) + (c-a) x+( a-b) =0 are equal , then prove that 2b=a+c

If a,b,c are in G.P.L, then the equations ax^(2) + 2bx + c = 0 0 and dx^(2) + 2ex+ f = 0 have a common root if ( d)/( a) , ( e )/( b ) , ( f )/( c ) are in :

If each pair of the three equations x^(2)+ax+b=0, x^(2)+cx+d=0 and x^(2)+ex+f=0 has exactly one root in common then show that (a+c+e)^(2)=4(ac+ce+ea-b-d-f )

If zeros of a polynomial f(x) = ax^(3) + 3bx^(2) + 3cx + d are in AP prove that 2b^(3) - 3abc + a^(2) d = c .

If one root of the equation ax^(2) + bx + c =0 is reciprocal of the one root of the equation a_(1)x^(2) + b_(1) x + c_(1) = 0 , then :

If equations ax^(2)-bx+c=0 (where a,b,c epsilonR and a!=0 ) and x^(2)+2x+3=0 have a common root, then show that a:b:c=1:2:3

Let a ,b , c ,p ,q be real numbers. Suppose alpha,beta are the roots of the equation x^2+2p x+q=0,alphaa n d1//beta are the roots of the equation a x^2+2b x+c=0,w h e r ebeta^2 !in {-1,0,1}dot Statement 1: (p^2-q)(b^2-a c)geq0 Statement 2: b!=p aorc!=q a