Home
Class 12
MATHS
If alpha , beta are roots of 375x^(2) - ...

If `alpha , beta `are roots of 375`x^(2) - 25x - 2 = 0 and s_(n) = alpha^(n) + beta^(n)` ,
then `underset(n rarr infty)(lim) sum_(r= 1)^(n) s_(r)` is :

A

`(7)/(116)`

B

`(1)/(12)`

C

`(29)/(358)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|13 Videos
  • QUADRATIC EQUATIONS

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|13 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS (QUESTIONS FROM KARNATAKA CET & COMED )|11 Videos
  • REAL NUMBERS

    MODERN PUBLICATION|Exercise Multiple Choice Questions (Level-II)|8 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of a x^(2)+b x+c=0 and A_(n)=alpha^(n)+beta^(n) , then, a A_(n+2)+b A_(n+1)+c A_(n)=

lim_(n rarr oo) sum_(r=1)^(n) 1/n e^(r/n) is

Knowledge Check

  • If alpha, beta are roots of 375x^(2) - 25x - 2 = 0 and s_(n) = alpha^(n) + beta^(n), then underset(n rarr infty) sum_(r = 1)^(n) S_(r) is :

    A
    `(7)/(116)`
    B
    `(1)/(12)`
    C
    `(29)/(358)`
    D
    Non of these.
  • If alpha, beta are the roots of x^(2)-a x+b=0 and A_(n)='alpha'^(n)+beta^(n) , then A_(n+1)=

    A
    `aA_(n)+b A_(n-1)`
    B
    `a A_(n)-b A_(n-1)`
    C
    `b A_(n-1)-a A_(n)`
    D
    `b A_(n)+a A_(n-1)`
  • If alpha and beta are roots of the equation x^(2) + x + 1 = 0, then alpha^(2) + beta^(2) is

    A
    1
    B
    `(-1-isqrt3)/(2)`
    C
    `(-1+isqrt3)/(2)`
    D
    `-1`
  • Similar Questions

    Explore conceptually related problems

    lim_(n rarr oo)1/nsum_(r=1)^(n) sqrt(r/n) =

    lim_(n rarr oo) (1)/(n^(3)) sum_(r = 1)^(n) r^(2) is :

    lim_(n rarr oo) sum_(r=0)^(n-1) 1/(n+r) =

    If alpha and beta are the roots of x^(2)+x+1=0 , then alpha^(16)+beta^(16)=

    lim_(x rarr oo) (1)/(n^(4)) sum_(r = 1)^(n) r^(3) is :