Home
Class 12
MATHS
The equations x=(1)/(2)(t+(1)/(t)), y=(1...

The equations `x=(1)/(2)(t+(1)/(t)), y=(1)/(2)(t-(1)/(t)), t ne 0`, represent

A

a circle

B

a parabola

C

an ellipse

D

a hyperbola

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    MODERN PUBLICATION|Exercise Multiple Choice Questions - LEVEL - II|20 Videos
  • HYPERBOLA

    MODERN PUBLICATION|Exercise Latest Questions from AIEEE/JEE Examinations|2 Videos
  • HEIGHTS AND DISTANCES

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|1 Videos
  • INDEFINITE INTEGERALS

    MODERN PUBLICATION|Exercise RCQs Recent Competitive Questions (Questions From Karnataka CET & COMED)|12 Videos

Similar Questions

Explore conceptually related problems

If x=a(t-(1)/(t)) , y=a(t+(1)/(t)) then (dy)/(dx) =

The equations x=(e^t+e^(-t))/2,y=(e^(t)-e^(-t))/2, t inR represent :

If t is a parameter, then x=a(t+(1)/(t)) , y=b(t-(1)/(t)) represents

If x = a(t+1/t), y =a(t-1/t), then dy/dx =

If x = (2t)/(1+t^(2)), y = (1-t^(2))/(1+t^(2)) then dy/dx =

int (1+t^(2))/(1+t^(4))dt =

The function f(x) = int_1^(x) [2(t-1)(t-2)^(3)+3(t-1)^(2)(t-2)^(2)] dt attains its maximum at x =

If x = (1-t^(2))/(1+t^(2)) and y = (2t)/(1+t^(2)) then dy/dx =