Home
Class 12
MATHS
If int f(x) sin xcos x dx=(1)/(2(b^(2)-a...

If `int f(x) sin xcos x dx=(1)/(2(b^(2)-a^(2))``*(log f(x))+C`, where C is a costant of integration, then f(x)=

A

`(2)/((b^(2)-a^(2))sin2x)`

B

`(2)/(ab sin 2x)`

C

`(2)/((b^(2)-a^(2))cos 2x)`

D

`(1)/((b^(2)cos^(2)x+sin^(2)xa^(2))`

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGERALS

    MODERN PUBLICATION|Exercise Latest Questions From AIEEE/JEE Examinations|5 Videos
  • HYPERBOLA

    MODERN PUBLICATION|Exercise Recent Competitive Questions|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)cosx dx=(1)/(2)f^(2)(x)+c , then f(x) is :

If int(1)/((e^(x)-1)^(2))dx=f(x)-log|g(x)|+c , then :

Knowledge Check

  • if int f (x ) sin x cos x dx = (1)/(2(b^(2) -a^(2)) log f(x ) + c where C is a constant of intergration then f(x) =

    A
    `(2)/((b^(2) -a^(2)) sin 2 x)`
    B
    `(2)/(ab si n 2 x)`
    C
    `(2)/((b^(2)-a^(2) cos 2x)`
    D
    `(2 )/(ab cos 2 x)`
  • If f(x)sinx.cosxdx=(1)/(2(b^(2)-a^(2)))logf(x)+c , where c is the constant of integration, then f(x)=

    A
    `(2)/((b^(2)-a^(2))cos2x)`
    B
    `(2)/(abcos2x)`
    C
    `(2)/((b^(2)-a^(2))sin2x)`
    D
    `(2)/("ab"sin2x)`
  • if int xe^(2x) dx = e^(2x).f(x)+c , where c is the constant of integration, then f(x) is

    A
    (3x-1)/4
    B
    (2x+1)/2
    C
    (2x-1)/4
    D
    (x-4)/6
  • Similar Questions

    Explore conceptually related problems

    int (√(tanx))/ (sin x cos x) dx = -f(x) =c, then f(x) =

    If f(x) = cos^(-1) [(1-(log x)^(2))/(1+(log x)^(2))] , then f^(')(e) =

    If the three function f(x),g(x) and h(x) are such that h(x)=f(x)g(x) and f'(a)g'(x)=c , where c is a constant, then : (f''(x))/(f(x))+(g''(x))/(g(x))+(2c)/(f(x)f(x)) is equal to :

    If int e^(x) ((1-sinx)/(1-cos x)) dx = f(x) + c then f(x) =

    If the three functions f(x),g(x) and h(x) are such that h(x)=f(x).g(x) and f'(x).g'(x)=c , where c is a constant then (f^('')(x))/(f(x))+(g^('')(x))/(g(x))+(2c)/(f(x)*g(x)) is equal to