Home
Class 12
MATHS
The equation tan^(-1) x-cot^(-1) x =tan^...

The equation `tan^(-1) x-cot^(-1) x =tan^(-1) (1/sqrt3)` has :

A

no solution

B

unique solution

C

infinite number of solutions

D

two solutions.

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (LEVEL - II)|20 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise AIEEE/JEE Examinations|2 Videos
  • INDEFINITE INTEGERALS

    MODERN PUBLICATION|Exercise RCQs Recent Competitive Questions (Questions From Karnataka CET & COMED)|12 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|7 Videos

Similar Questions

Explore conceptually related problems

cot(tan^(-1)a+cot^(-1)a)

cos[tan^(-1) {sin(cot^(-1) x)}] =

cos [ tan^(-1){sin (cot^(-1)x)}] =

If tan^(-1)3+tan^(-1)x=tan^(-1)8 , then x=

The integral solution of : tan^(-1) x+ tan^(-1) (1/y)=tan^(-1) 3 is :

The number of real solutions of the equation tan^(-1) sqrt( x ( x + 1)) + sin^(-1) sqrt(x^(2) + x + 1) = (pi)/(2) is

The solution of tan^(-1)x + 2 cot^(-1)x = (2pi)/(3) is

Find the value of tan[cos^(-1) (1/2) + tan^(-1) ( - 1/sqrt3)]