Home
Class 12
MATHS
The value of sin (cot^(-1)x) is :...

The value of sin `(cot^(-1)x)` is :

A

`sqrt(1+x^2)`

B

x

C

`(1+x^2)^(-3//2)`

D

`(1+x^2)^(-1//2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (LEVEL - II)|20 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise AIEEE/JEE Examinations|2 Videos
  • INDEFINITE INTEGERALS

    MODERN PUBLICATION|Exercise RCQs Recent Competitive Questions (Questions From Karnataka CET & COMED)|12 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|7 Videos

Similar Questions

Explore conceptually related problems

The value of cot (sin ^(-1) x) is

The value of sin [cot^(-1) {cos (tan^(-1)x)}] is :

Find the value of sin ( 2 cos^(-1) x + sin^(-1) x) " when " x = 1/5

If tan ^(-1) x=(pi)/(10) for some x in R then the value of cot ^(-1) x is

If x + 1/x = 2 , the principal value of sin^(-1) x is

The value of sin ^(-1)[cos (cos ^(-1)(cos x)+sin ^(-1)(sin x))] where x in((pi)/(2), pi) is

Considering only the principal values, if tan ("cot"^(-1) x)=sin ("cot"^(-1) 1/2) , then x is :

The value of x for which sin (cot^(-1) (1+x))=cos (tan^(-1) x) is :

If sin^(-1) x + sin^(-1) y=pi/2 , then the value of cos^(-1) x +cos^(-1) y is :

If sin x+sin ^(2) x=1 then the value of cos ^(2) x+cos ^(4) x is