Home
Class 12
MATHS
Solution set of cos^(-1) x -sin^(-1) x=s...

Solution set of `cos^(-1) x -sin^(-1) x=sin^(-1) (1-x)` is :

A

[-1,1]

B

[-1,0]

C

`[0,1/2]`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (LEVEL - II)|20 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise AIEEE/JEE Examinations|2 Videos
  • INDEFINITE INTEGERALS

    MODERN PUBLICATION|Exercise RCQs Recent Competitive Questions (Questions From Karnataka CET & COMED)|12 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|7 Videos

Similar Questions

Explore conceptually related problems

d/dx {cos^(-1)x + sin^(-1)x}=

If cos^(-1) x > sin^(-1) x , then :

The solution set of the equation sin ^(-1) x=2 tan ^(-1) x is

he solution of sin^(-1)' x-sin^(-1)' 2x=+-(pi)/(3) is…...

If sin ^(-1) x+cos ^(-1)(1-x)=0 then x=

cos[tan^(-1) {sin(cot^(-1) x)}] =

Derivative of cos^(-1)x w.r.t sin^(-1)x is

If sin ^(-1) x+sin ^(-1)(1-x)=cos ^(-1) x, then x in

int (sin^(-1)x - cos^(-1)x)/(sin^(-1)x + cos^(-1)x)dx =

If sin^(-1) x +cos^(-1) (1-x)=sin^(-1) (-x) , then x satisfies :