Home
Class 12
MATHS
sin(2 sin^(-1) sqrt(63/65)) =...

`sin(2 sin^(-1) sqrt(63/65))` =

A

`sqrt63/65`

B

`(8sqrt63)/65`

C

`(4sqrt65)/65`

D

`(2sqrt126)/65`

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise AIEEE/JEE Examinations|2 Videos
  • INDEFINITE INTEGERALS

    MODERN PUBLICATION|Exercise RCQs Recent Competitive Questions (Questions From Karnataka CET & COMED)|12 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|7 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following (i) sin ( pi/2 - sin^(-1) ( (-1)/2)) (ii) sin(pi/2 - sin^(-1)(- sqrt3/2))

d/dx (sin^(-1) sqrt((1-x)/2)) =

Knowledge Check

  • sin(2sin^(-1)sqrt((63)/(65)))=

    A
    `(8sqrt(63))/(65)`
    B
    `(sqrt(63))/(65)`
    C
    `(2sqrt(126))/(65)`
    D
    `(4sqrt(65))/(65)`
  • sin (2 sin ^(-1) (2)/(3))=

    A
    `(4 sqrt(5))/(9)`
    B
    `(4)/(3 sqrt(5))`
    C
    `(2)/(5)`
    D
    none of these
  • int (sin^(-1))/(sqrt(1+x)) dx=

    A
    `2sqrt(1+x) sin^(-1) x+2sqrt(1-x)+c`
    B
    `2sqrt(1+x) (sin^(-1) x+ 2) + c`
    C
    `2sqrt(1+x) sin ^(-1) x+4 sqrt(1-x)+c`
    D
    None of these.
  • Similar Questions

    Explore conceptually related problems

    The domain of the function sin^(-1) sqrt(x-1) is :

    The value of sin^(-1) ((2 sqrt2)/(3)) + sin^(-1) ((1)/(3)) is equal to

    The principal value of sin^(-1) (-sqrt3/2) is :

    If I_(1) = int sin^(-1) x dx and I_(2) = int sin^(-1) sqrt(1-x^(2))dx then

    (sin^(-1)x)/(sqrt(1+x))dx=