Home
Class 12
MATHS
If x ne npi, x ne (2n+1)pi/2 , n in Z, t...

If `x ne npi, x ne (2n+1)pi/2 , n in Z`, then :
`sin^(-1)((sin^(-1) (cos x) + cos^(-1) (sinx))/(tan^(-1) (cotx)+cot^(-1) (tanx)))` =

A

`pi/3`

B

`pi/4`

C

`pi/6`

D

`pi/2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise AIEEE/JEE Examinations|2 Videos
  • INDEFINITE INTEGERALS

    MODERN PUBLICATION|Exercise RCQs Recent Competitive Questions (Questions From Karnataka CET & COMED)|12 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|7 Videos

Similar Questions

Explore conceptually related problems

If x ne n pi, x ne (2n+1) (pi)/(2) n in Z, then : sin^(-1) ((sin^(-1) (cos x) + cos ^(-1) (sin x))/(tan^(-1) (cot x) + cot^(-1) (tan x )))=

If x!=npi,x!=(2n+1)(pi)/(2),nin then (sin^(-1)(cosx)+cos^(-1)(sinx))/(tan^(-1)(cotx)+cot^(-1)(tanx))

cos[tan^(-1) {sin(cot^(-1) x)}] =

int (sin^(-1)x - cos^(-1)x)/(sin^(-1)x + cos^(-1)x)dx =

sin ^(-1) x=(pi)/(5) , then cos ^(-1) x=

Evaluate : sin^(-1)(sin100)+cos^(-1)(cos100 )+tan^(-1) (tan100)+cot^ −1 (cot100) .

cos [ tan^(-1){sin (cot^(-1)x)}] =

If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y