Home
Class 12
MATHS
The value of sin [cot^(-1) {cos (tan^(-1...

The value of sin `[cot^(-1) {cos (tan^(-1)x)}]` is :

A

`(sqrt((1+x^2)/(2+x^2)))`

B

`(sqrt((2+x^2)/(1+x^2)))`

C

`(sqrt((x^2-2)/(x^2+1)))`

D

`(sqrt((x^2-1)/(x^2-2)))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise AIEEE/JEE Examinations|2 Videos
  • INDEFINITE INTEGERALS

    MODERN PUBLICATION|Exercise RCQs Recent Competitive Questions (Questions From Karnataka CET & COMED)|12 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|7 Videos

Similar Questions

Explore conceptually related problems

The value of sin (cot^(-1)x) is :

The value of the expression sin[cot^(-1) (cos (tan^(-1) 1))] is :

The value of cot (sin ^(-1) x) is

cos[tan^(-1) {sin(cot^(-1) x)}] =

The value of x for which sin (cot^(-1) (1+x))=cos (tan^(-1) x) is :

cos [ tan^(-1){sin (cot^(-1)x)}] =

The value of sin ^(-1)[cos (cos ^(-1)(cos x)+sin ^(-1)(sin x))] where x in((pi)/(2), pi) is

Find the value of sin ( 2 cos^(-1) x + sin^(-1) x) " when " x = 1/5

cot(tan^(-1)a+cot^(-1)a)

sin cot^(-1) tan cos^(-1) x is equal to :