Home
Class 12
MATHS
In a triangle ABC, 2acsin.(1)/(2)(A-B+C)...

In a triangle ABC, `2acsin.(1)/(2)(A-B+C)` is equal to :

A

`a^(2)+b^(2)-c^(2)`

B

`c^(2)+a^(2)-b^(2)`

C

`b^(2)-c^(2)-a^(2)`

D

`c^(2)-a^(2)-b^(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • UNIT TEST PAPER NO.3

    MODERN PUBLICATION|Exercise ASSERTION-REASON & COLUMN MATCHING TYPE QUESTIONS (SECTION-A ASSERTION -REASON TYPE QUESTIONS)|13 Videos
  • UNIT TEST PAPER NO.3

    MODERN PUBLICATION|Exercise ASSERTION-REASON & COLUMN MATCHING TYPE QUESTIONS (SECTION-B COLUMN MATCHING TYPE QUESTIONS)|4 Videos
  • UNIT TEST PAPER NO. 6 (THREE - DIMENSIONAL GEOMETRY, VECTORS & PROBABILITY)

    MODERN PUBLICATION|Exercise Select the correct answer|25 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTION|11 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, 2casin.(A-B+C)/(2)=

In any triangle ABC , sin.(A)/(2) is

If in a triangle ABC, 2cosA=sinBcosecC , then :

In a triangle ABC, a[b cos C - c cos B] =

In a triangle ABC, (a+b+c)(b+c-a)=lambdabc if :

In a triangle ABC, a[b cos C - c cos B]=

If in a triangle ABC, acos^(2).(C)/(2)+c cos^(2).(A)/(2)=(3b)/(2) , then the sides a, b, c :

If in a triangle ABC , acos^(2).(C)/(2)+cos^(2).(A)/(2)=(3b)/(2) , then the sides a,b,c

In a triangle ABC, if (cos A)/(a) = (cos B)/(b)= (cos C)/(c ) and a=2 then its area is

Prove that in any triangle ABC, (sin A)/a= (sin B)/b=(Sin C)/c .