Home
Class 11
PHYSICS
Differentiate the following : (iii) si...

Differentiate the following :
(iii) `sin(3x^(3)+7)`

Text Solution

AI Generated Solution

To differentiate the function \( y = \sin(3x^3 + 7) \), we will use the chain rule. The chain rule states that if you have a composite function \( y = f(g(x)) \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = f'(g(x)) \cdot g'(x) \] Here, \( f(u) = \sin(u) \) and \( g(x) = 3x^3 + 7 \). ...
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (7)|6 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (8)|12 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (5)|16 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following : (ii) sinx^(3)

Differentiate the following : (iii) sin(ax+b)^(2)

Differentiate the following : (iii) cot sqrtx

Differentiate the following : (iii) cos^(2)x sin x^(2)

Differentiate the following : sin(x^(2)+1)

Differentiate the following w.r.t.x : sin(x^(2))

Differentiate the following w.r.t.x. sin^(3)x

Differentiate the following w.r.t.x : sin(x^2)

Differentiate the following by : (x+1)(x+2)(x+3)

Differentiate the following w.r.t. x : e^(x^(3))