Home
Class 11
PHYSICS
Obtain the following integrals : int(6...

Obtain the following integrals :
`int(6^(4)+9^(6))dx`.

A

`(6^(4)+9^(6))x`

B

`(6^(4)+9^(6))`

C

`0`

D

`(6^(5)+9^(7))x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (6^4 + 9^6) \, dx \), we will follow these steps: ### Step 1: Simplify the expression inside the integral First, we need to evaluate the constants \( 6^4 \) and \( 9^6 \). Calculating \( 6^4 \): \[ 6^4 = 6 \times 6 \times 6 \times 6 = 1296 \] Calculating \( 9^6 \): \[ 9^6 = 9 \times 9 \times 9 \times 9 \times 9 \times 9 = 531441 \] Now, we can rewrite the integral: \[ \int (6^4 + 9^6) \, dx = \int (1296 + 531441) \, dx \] ### Step 2: Combine the constants Now, add the two constants together: \[ 1296 + 531441 = 532737 \] So, the integral now becomes: \[ \int 532737 \, dx \] ### Step 3: Integrate the constant The integral of a constant \( c \) with respect to \( x \) is given by: \[ \int c \, dx = cx + C \] where \( C \) is the constant of integration. Thus, we have: \[ \int 532737 \, dx = 532737x + C \] ### Final Answer The final result of the integral is: \[ \int (6^4 + 9^6) \, dx = 532737x + C \] ---

To solve the integral \( \int (6^4 + 9^6) \, dx \), we will follow these steps: ### Step 1: Simplify the expression inside the integral First, we need to evaluate the constants \( 6^4 \) and \( 9^6 \). Calculating \( 6^4 \): \[ 6^4 = 6 \times 6 \times 6 \times 6 = 1296 ...
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (9)|13 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (10)|12 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (7)|6 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

Obtain the following integrals : dx.

Obtain the following integrals : int6^(t)dt

Evaluate the following integrals : int(x^(6)+1)/(x^(2)+1)dx

Evaluate the following integrals: int(3x+4)^(2)dx

Evaluate the following integral : int(1)/(x^(4)+1)dx

Evaluate the following integral: int_(-6)^6|x+2|dx

Evaluate the following integrals: int(1)/(sqrt(9-4x^(2)))dx

Evaluate the following integrals : (a) int (dx)/( x^(2) - 6x + 13),

Find the following integrals : (i) int(dx)/(x^(2)-6x+13)int(dx)/(3x^(2)+13x-10)int(dx)/(sqrt(5x^(2)-2x))

Find the following integrals: (i) int_(1)^(9)(dx)/(sqrt(x))" " (ii) int_(1)^(3)12x^(3)dx " " (iii) int_(4)^(16) sqrt(t).dt