Home
Class 11
PHYSICS
Integrate the following : int(1)/(1-si...

Integrate the following :
`int(1)/(1-sin x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{1 - \sin x} \, dx \), we can follow these steps: ### Step 1: Multiply the numerator and denominator by \( 1 + \sin x \) We start by rewriting the integral: \[ \int \frac{1}{1 - \sin x} \, dx = \int \frac{1 + \sin x}{(1 - \sin x)(1 + \sin x)} \, dx \] ### Step 2: Simplify the denominator Using the identity \( (1 - \sin x)(1 + \sin x) = 1 - \sin^2 x = \cos^2 x \), we can rewrite the integral: \[ \int \frac{1 + \sin x}{\cos^2 x} \, dx \] ### Step 3: Split the integral Now we can split the integral into two parts: \[ \int \frac{1}{\cos^2 x} \, dx + \int \frac{\sin x}{\cos^2 x} \, dx \] ### Step 4: Integrate each part The first integral \( \int \frac{1}{\cos^2 x} \, dx \) is known to be: \[ \int \sec^2 x \, dx = \tan x + C_1 \] The second integral can be solved using the substitution \( u = \cos x \), which gives \( du = -\sin x \, dx \). Thus, we have: \[ \int \frac{\sin x}{\cos^2 x} \, dx = -\int \frac{1}{u^2} \, du = \frac{1}{u} + C_2 = \frac{1}{\cos x} + C_2 = \sec x + C_2 \] ### Step 5: Combine the results Combining both parts, we get: \[ \int \frac{1}{1 - \sin x} \, dx = \tan x + \sec x + C \] where \( C = C_1 + C_2 \) is the constant of integration. ### Final Answer Thus, the final result is: \[ \int \frac{1}{1 - \sin x} \, dx = \tan x + \sec x + C \] ---

To solve the integral \( \int \frac{1}{1 - \sin x} \, dx \), we can follow these steps: ### Step 1: Multiply the numerator and denominator by \( 1 + \sin x \) We start by rewriting the integral: \[ \int \frac{1}{1 - \sin x} \, dx = \int \frac{1 + \sin x}{(1 - \sin x)(1 + \sin x)} \, dx ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (10)|12 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (8)|12 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

Integrate the following : (ii) int(1)/(1-cos x)dx

Integrate the following : (i) int(3x^(-7)+x^(-1))dx

Integrate the following: int(sin2x)/sqrt(1+cos^2x)dx

Evaluate the following integrals: int (1)/(sin^(2)x cos^(2)x) dx

Evaluate the following integrals : int(1)/(1+cos2x)dx

Integrate the following (1) intx^(-3/2)dx (2) intsin60^(@)dx (3) int(1)/(10x)dx (4) int(2x^(3)-x^(2)+1)dx

Evaluate the following integrals int (dx)/(1+sin x+cos x)

Evaluate the following integrals: int (dx)/(1-sin^(2)x)

Evaluate the following integrals: int cos^(-1)(sin x)dx

Evaluate the following Integrals. int 1/(1+sin (ax))dx