Home
Class 11
PHYSICS
int(t-cos omegat+(1)/(t))dt...

`int(t-cos omegat+(1)/(t))dt`

A

`(t^(2))/(2)-(sin omegat)/(omega)+t`

B

`(t^(2))/(2)-(sin omegat)/(omega)+logt`.

C

`(t^(2))/(2)-(sin omegat)+logt`.

D

`(t^(2))/(2)-(cos omegat)/(omega)+logt.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \left( t - \cos(\omega t) + \frac{1}{t} \right) dt \), we can break it down into three separate integrals: 1. **Integrate \( t \)**: \[ \int t \, dt = \frac{t^2}{2} \] 2. **Integrate \( -\cos(\omega t) \)**: To integrate \( -\cos(\omega t) \), we use the formula for the integral of cosine: \[ \int -\cos(\omega t) \, dt = -\frac{1}{\omega} \sin(\omega t) \] 3. **Integrate \( \frac{1}{t} \)**: The integral of \( \frac{1}{t} \) is: \[ \int \frac{1}{t} \, dt = \ln |t| \] Now, we can combine all these results together: \[ \int \left( t - \cos(\omega t) + \frac{1}{t} \right) dt = \frac{t^2}{2} - \frac{1}{\omega} \sin(\omega t) + \ln |t| + C \] where \( C \) is the constant of integration. Thus, the final answer is: \[ \frac{t^2}{2} - \frac{1}{\omega} \sin(\omega t) + \ln |t| + C \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (10)|12 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (8)|12 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

2int_(0)^(t)(1-cos t)/(t)dt

int(1)/(t^(2))cos((1)/(t)-1)dt

int_e^(e(-1)) 1/(t(t+1)) dt

Integrate the following : (i) int(t-(1)/(t))^(2)" dt " (ii) intsin(10t-50)" dt " (iii) inte^((100t+6))" dt "

Evalueta int_(0)^(T)E_(0)I_(0)sin omega t sin(omegat+phi)dt

Evalueta int_(0)^(T)I_(0)sin omegat dt

int e^(t)(cost-sin t)dt

int(t^(2)+1)/(t^(4))dt