Home
Class 11
PHYSICS
Evaluate int tanxdx....

Evaluate `int tanxdx.`

A

`-logsinx.`

B

`logcosx.`

C

`-logcosx.`

D

`logsecx.`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \tan x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting \( \tan x \) in terms of sine and cosine: \[ \tan x = \frac{\sin x}{\cos x} \] Thus, we can express the integral as: \[ \int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx \] ### Step 2: Use Substitution We will use substitution to simplify the integral. Let: \[ t = \cos x \] Then, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = -\sin x \quad \Rightarrow \quad dt = -\sin x \, dx \] From this, we can express \( \sin x \, dx \) in terms of \( dt \): \[ \sin x \, dx = -dt \] ### Step 3: Substitute in the Integral Now, we substitute \( t \) and \( dt \) into the integral: \[ \int \frac{\sin x}{\cos x} \, dx = \int \frac{-dt}{t} \] This simplifies to: \[ -\int \frac{dt}{t} \] ### Step 4: Integrate The integral of \( \frac{1}{t} \) is: \[ -\ln |t| + C \] Substituting back \( t = \cos x \): \[ -\ln |\cos x| + C \] ### Step 5: Final Result Thus, the final result of the integral is: \[ \int \tan x \, dx = -\ln |\cos x| + C \] ### Summary The evaluated integral is: \[ \int \tan x \, dx = -\ln |\cos x| + C \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (10)|12 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (8)|12 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

Evaluate int xtanxdx

Evaluate I=int tan xdx

Evaluate int xtan^2xdx

Evaluate: int dx

Evaluate int5 sqrtxdx

Evaluate int log xdx

Evaluate int logx dx

Evaluate int xe^x dx

Evaluate int 2x dx

Evaluate : int tan(x+a)dx