Home
Class 11
PHYSICS
Evalutate intx^(3)sinx^(4)dx....

Evalutate `intx^(3)sinx^(4)dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int x^3 \sin(x^4) \, dx \), we can use the substitution method. Here are the steps to solve the integral: ### Step 1: Choose a substitution Let \( t = x^4 \). Then, we need to find \( dt \): \[ dt = 4x^3 \, dx \quad \Rightarrow \quad dx = \frac{dt}{4x^3} \] ### Step 2: Substitute in the integral Now, substitute \( t \) and \( dx \) into the integral: \[ \int x^3 \sin(x^4) \, dx = \int x^3 \sin(t) \cdot \frac{dt}{4x^3} \] The \( x^3 \) terms cancel out: \[ = \frac{1}{4} \int \sin(t) \, dt \] ### Step 3: Integrate Now, we can integrate \( \sin(t) \): \[ \int \sin(t) \, dt = -\cos(t) + C \] Thus, \[ \frac{1}{4} \int \sin(t) \, dt = -\frac{1}{4} \cos(t) + C \] ### Step 4: Substitute back Now, substitute back \( t = x^4 \): \[ -\frac{1}{4} \cos(x^4) + C \] ### Final answer The final result of the integral is: \[ \int x^3 \sin(x^4) \, dx = -\frac{1}{4} \cos(x^4) + C \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (10)|12 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (8)|12 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

intx^(3)sin(x^(4))dx

Evaluate: intx^3sinx^2dx

intx^(1/3)sin(x^(4/3))dx

Evaluate intx^(3)cos(x^(4)+2)dx .

intx^(2)sinx^(3)dx=?

intx^(2)*sin x^(3)dx

Evaluate: intx^2sinx\ dx

intx^(3)cosx^(2)dx=?

intx^(2)secx^(3)dx=

intx^(2) . sin x^(3) dx