Home
Class 11
PHYSICS
Evaluate inttheta^(-(1)/(2)) sin theta^(...

Evaluate `inttheta^(-(1)/(2)) sin theta^((1)/(2)) d theta.`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \theta^{-\frac{1}{2}} \sin(\theta^{\frac{1}{2}}) \, d\theta \), we will use substitution. Here’s a step-by-step solution: ### Step 1: Choose a substitution Let \( t = \theta^{\frac{1}{2}} \). Then, we have: \[ \theta = t^2 \] Now, differentiate both sides with respect to \( \theta \): \[ d\theta = 2t \, dt \] ### Step 2: Rewrite the integral in terms of \( t \) Substituting \( \theta = t^2 \) and \( d\theta = 2t \, dt \) into the integral, we get: \[ \int \theta^{-\frac{1}{2}} \sin(\theta^{\frac{1}{2}}) \, d\theta = \int (t^2)^{-\frac{1}{2}} \sin(t) \cdot (2t \, dt) \] This simplifies to: \[ = \int t^{-1} \sin(t) \cdot (2t \, dt) = 2 \int \sin(t) \, dt \] ### Step 3: Integrate Now we can integrate: \[ 2 \int \sin(t) \, dt = -2 \cos(t) + C \] ### Step 4: Substitute back to \( \theta \) Recall that \( t = \theta^{\frac{1}{2}} \), so substituting back gives: \[ -2 \cos(\theta^{\frac{1}{2}}) + C \] ### Final Answer Thus, the evaluated integral is: \[ \int \theta^{-\frac{1}{2}} \sin(\theta^{\frac{1}{2}}) \, d\theta = -2 \cos(\theta^{\frac{1}{2}}) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (10)|12 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (8)|12 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int cos2 theta ln((cos theta+sin theta)/(cos theta-sin theta))d theta

Evaluate int_(0)^(pi//2) cosec theta tan ^(-1) (c sin theta)d theta .

Evaluate int _(0)^(pi//2) cosec theta tan^(-1) (c sin theta ) d theta .

If cot theta=(15)/(8), then Evaluate ((2+2sin theta)(1-sin theta))/((1+cos theta)(2-2cos theta))

If z=1-cos theta+i sin theta, then |z|=2(sin theta)/(2) b.2(sin theta)/(2)c.2|(sin theta)/(2)|d.2|(cos theta)/(2)|

int_ (0) ^ ((pi) / (2)) sin theta cos theta (a ^ (2) sin ^ (2) theta + b ^ (2) cos ^ (2) theta) ^ ((1) / ( 2)) d theta = ((1) / (3)) ((a ^ (2) + ab + b ^ (2)) / (a + b))

int (sin ^ (2) theta) / ((1 + cos theta) ^ (2)) d theta

If costhetagtsinthetagt0 , then evaluate: int{log((1+sin2theta)/(1-sin2theta))^(cos2theta)+log((cos2theta)/(1+sin2theta))}d theta

If cos theta>sin theta>0, then evaluate : int{log((1+sin2 theta)/(1-sin2 theta))^(cos^(2)theta)+log((cos2 theta)/(1+sin2 theta))}d theta

Evaluate int((2 sin theta + sin 2 theta)d theta)/((cos theta-1)sqrt(cos theta + cos^(2) theta + cos^(3) theta)) .