Home
Class 11
PHYSICS
A length - scale (l) depends on the perm...

A length - scale `(l)` depends on the permittivity `(epsilon)` of a dielctric material. Boltzmann constant `(k_(B))`, the absolute tempreture `(T)`, the number per unit volume `(n)` of certain charged particles, and the charge `(q)` carried by each of the partcles. which of the following expression `(s)` for `I` is `(are)` dimensionally correct?

A

`l= sqrt(((nq^2)/(varepsilonk_(B)T)))`

B

`l= sqrt(((varepsilonk_(B)T)/(nq^2)))`

C

`l= sqrt(((q^2)/(varepsilon n^(2/3) k_(B)T)))`

D

`l= sqrt(((q^2)/(varepsilon n^(1/3)k_(B)T)))`

Text Solution

Verified by Experts

The correct Answer is:
B, D

Permittivity : `[varepsilon][M^(-1)L^(-3)T^(4)I^(2)]`
Boltzmann constant : `[k_B]=[ML^(2)T^(-2) theta^(-1)]`
Absolute temperature : `[T]= [theta]`
Number per unit volume : `[n]= [L^(-3)]`
Charge : `[theta]=[TI]`
Option (b) : `sqrt((varepsilon k_(B)T)/(n q^(2)))= sqrt((L^(-1)T^(2)I^(2))/(L^(-3)T^(2)I^(2)))=[L]`
Option (d) : `sqrt((q^2)/(varepsilon n^(1/3)k_(B)T)) = sqrt((A^(2)T^(2))/([L^(-1)T^(2)A^(2)]xx[L^(-3)]^(1/3)))`
`=sqrt((1)/([L^(-1)]xx[L^(-1)]))=[L]`
We can easily understand that dimensions of remaining options are not equal to that of length.
Hence options b and d are correct.
Promotional Banner

Topper's Solved these Questions

  • UNITS AND MEASUREMENT

    MODERN PUBLICATION|Exercise COMPETITION FILE (OBJECTIVE TYPE QUESTIONS) (MCQs BASED ON A GIVEN PASSAGE/COMPREHENSION)|5 Videos
  • UNITS AND MEASUREMENT

    MODERN PUBLICATION|Exercise COMPETITION FILE (ASSERTION REASON TYPE QUESTIONS)|6 Videos
  • UNITS AND MEASUREMENT

    MODERN PUBLICATION|Exercise COMPETITION FILE (OBJECTIVE TYPE QUESTIONS) (MCQs) (JEE ADVANCED FOR IIT ENTRANCE)|13 Videos
  • THERMAL PROPERTIES OF MATTER

    MODERN PUBLICATION|Exercise CHAPTER PRACTICE TEST|15 Videos
  • WAVES

    MODERN PUBLICATION|Exercise CHAPTER PRACTICE TEST|14 Videos