Home
Class 11
PHYSICS
In the above problem, calculate the mome...

In the above problem, calculate the moment of inertia about an axis passing through point Q and perpendicular to the plane of square.

Text Solution

Verified by Experts

The correct Answer is:
`36xx10^(-3)kgm^(2)`
Promotional Banner

Topper's Solved these Questions

  • SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

    MODERN PUBLICATION|Exercise Conceptual Questions|24 Videos
  • SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

    MODERN PUBLICATION|Exercise PROBLEMS TOUGH & TRICKY|8 Videos
  • SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

    MODERN PUBLICATION|Exercise Chapter Practice Test (for Board Examination)|16 Videos
  • PHYSICAL WORLD

    MODERN PUBLICATION|Exercise Revision exercises (Long answer questions)|6 Videos
  • THERMAL PROPERTIES OF MATTER

    MODERN PUBLICATION|Exercise CHAPTER PRACTICE TEST|15 Videos

Similar Questions

Explore conceptually related problems

For the same total mass which of the following will have the largest moment of inertia about an axis passing through its centre of mass and perpendicular to the plane of the body.

For the same total mass, which of the following will have the largest moment of inertia about an axis passing through the centre of mass and perpendicular to the plane of the body

A square of a side a is cut from a square of side 2a as shown in the figure. Mass of this square with a hole is M. Then its moment of inertia about an axis passing through its centre of mass and perpendicular to its plane will be

An isosceles triangular piece is cut a square plate of side l . The piece is one-fourth of the square and mass of the remaining plate is M . The moment of inertia of the plate about an axis passing through O and perpendicular to its plane is

A uniform rod of mass m is bent into the form of a semicircle of radius R. The moment of inertia of the rod about an axis passing through A and perpendicular to the plane of the paper is

MODERN PUBLICATION-SYSTEMS OF PARTICLES AND ROTATIONAL MOTION-PRACTICE PROBLEMS
  1. The speed of a moving car is 60kmh^(-1). The wheels having diameter of...

    Text Solution

    |

  2. The motor of engine rotating at an angular velocity of 500 rpm slows d...

    Text Solution

    |

  3. Three masses 1 kg, 2 kg and 3 kg are located at the vertices of an equ...

    Text Solution

    |

  4. Four point masses of 10 kg each are placed at the corners of a square ...

    Text Solution

    |

  5. In the above problem, calculate the moment of inertia about an axis pa...

    Text Solution

    |

  6. What will be the moment of inertia (a) about the diameter, (b) about t...

    Text Solution

    |

  7. Calculate the ration of radii of gyration of circular ring and a disc ...

    Text Solution

    |

  8. A fly wheel (disc form) of mass 50 kg and diameter 100 cm is making 15...

    Text Solution

    |

  9. A sphere of moment of inertia 10kgm^(2) is rotating at a speed of 100 ...

    Text Solution

    |

  10. A rotor rotating with an angular speed of 100rads^(-1). To make it rot...

    Text Solution

    |

  11. A hollow cylinder of mass 5 kg rolls down with a speed of 20 m/s witho...

    Text Solution

    |

  12. A solid sphere (initially at rest) of mass 7 kg and radius 40 cm which...

    Text Solution

    |

  13. Calculate the radius of gyration of a sphere (a) about its diameter (b...

    Text Solution

    |

  14. Calculate the rotational kinetic energy of a body of mass 2 kg rotatin...

    Text Solution

    |

  15. The time period of rotation of the sun about its axis is 27 days. If t...

    Text Solution

    |

  16. Mass remaining constant, if the earth suddenly contracts to one third ...

    Text Solution

    |

  17. A body completes one revolution along a horizontal circle in 10 s when...

    Text Solution

    |

  18. A flywheel is rotating at an angular speed of 150 rpm. If the moment o...

    Text Solution

    |

  19. Calculate the acceleration of a hollow cylinder rolling down an inclin...

    Text Solution

    |

  20. A body rolls without slipping. The radius of gyration of the body abou...

    Text Solution

    |