Home
Class 12
MATHS
Find the domain of the following followi...

Find the domain of the following following functions:
(a) `f(x)=(sin^(-1))/(x)`
(b) ` f(x)=sin^(-1)(|x-1|-2)`
(c ) `f(x)=cos^(-1)(1+3x+2x^(2))`
(d ) `f(x)=(sin^(-1)(x-3))/(sqrt(9-x^(2)))`
(e ) `f(x)="cos"^(-1)((6-3x)/(4))+"cosec"^(-1)((x-1)/(2))`
(f) `f(x)=sqrt("sec"^(-1)((2-|x|)/(4)))`

Text Solution

Verified by Experts

The correct Answer is:
(a) `[-1, 0) cup (0,1]`
(b) `[-2,0] cup [2,4]`
(c ) `[-3//2,0]`
(d) `[2,3)`
(e ) `[3,10//3]`
(f) `(-oo,-6] cup [6,oo)`

(a) `f(x)` is defined if `x in [-1,1] " and " x ne 0,`i.e.,
`x in [-1,0)cup (0,1]`
(b) `f(x)=sin^(-1)(|x-1|-2)`
Since the domain of `sin^(-1)x` is `[-1,1],f(x)` is defined if
`-1 le |x-1|-2 le 1`
or `1 le |x-1| le 3`
i.e., `-3 le x-1 le -1 " or " 1 le x -1 le 3`
i.e., `-2 le x le 0 " or " 2 le x le 4`
or domain `=[-2,0]cup [2,4]`
(c ) `-1 le 1+3x+2x^(2) le 1`
or ` 2x^(2)+3x+1 ge -1`
or ` 2x^(2) +3x+2 ge 0 " (1)" `
and `2x^(2) +3x le 0 " (2)" `
From equation (2), `2x^(2) +3x le 0" or " 2x(x+(3)/(2)) le 0`
or `(-3)/(2) le x le 0 " or " x in [-(3)/(2),0]`
In equation (1), we get imaginary root for `2x^(2)+3x+2=0 " and " 2x^(2)+3x+2 ge 0` for all x. Therefore,
domain of function`=[-(3)/(2),0]`
(d) To define `f(x), 9-x^(2) gt 0 " or " -3 lt x lt 3 " (1) " `
`-1 le (x-3) le 1 " or " 2 le x le 4 " (2)" `
From equations (1) and (2), `2 le x lt 3," i.e., " x in [2,3).`
(e ) `f(x)="cos"^(-1)((6-3x)/(4))+"cosec"^(-1)((x-1)/(2))`
For ` "cos"^(-1)((6-3x)/(4)),-1 le (6-3x)/(4) le 1`
or `-4 le 6-3x le 4`
or `-10 le -3x le -2`
or `2//3 le x le 10//3 " (1)" `
For ` "cosec"^(-1)((x-1)/(2)),(x-1)/(2) le -1 " or "(x-1)/(2) ge 1`
i.e., `x le -1 " or " x ge 3 " (2)" `
From equation (1) and (2), ` x in [3,(10)/(3)].`
(f) `f(x)=sqrt("sec"^(-1)((2-|x|)/(4)))`
`sec^(-1)` function always takes positive values which are `[0,pi]-{pi/2}.`
Hence, the given function is defined if
`(2-|x|)/(4) le -1 " or " (2-|x|)/(4) ge 1`
i.e., `|x| ge 6 " or " |x| le -2 i.e., x in (-oo,-6] cup [6,oo)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.8|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.9|13 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.6|8 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|31 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the domain of each of the following function: f(x)=2^(sin^(-1)x)+1/(sqrt(x-2))

Find the domain of each of the following functions: f(x)=sin^(-1)x^(2) (ii) f(x)=sin^(-1)x+sin x

Find the domain of each of the following functions: f(x)=sin^(-1)sqrt(x^(2)-1)( ii) f(x)=sin^(-1)x+sin2x

Find the domain of following function: f(x)=sqrt(1-x)-"sin^(-1)((2x-1)/3)

Find the domain of the following functions (a) f(x)=(1)/(sqrt(x-2)) " (b) " f(x)=(1)/(x^(3)-x) (c ) f(x)= root(3)(x^(2)-2)

Find the domain of each of the following function: f(x)=sqrt(1-2x)+3sin^(-1)((3x-1)/2)

Find the one-sided limits of the following functions as x to 0 (a) f(x)=(1)/(2-2^(1//x)) (b) f(x)=e^(1//x) . (c ) f(x)=(|sin x|)/(x)

If f(x)=(sin^(-1)x)/(sqrt(1-x^(2))),then(1-x^(2))f'(x)-xf(x)=

Find the domain of the following: (i) f(x) = (1)/(log_(10) (1-x)) + sqrt(x+2) (ii) f(x) = sqrt(1-2x) + 3 sin^(-1) ((3x-1)/(2))

Find the domains of defination of the following functions: (a) f(x)=sqrt(x^(3)-x^(2)) , (b f(x)=sqrt(sin sqrtx) (c) fx)=sqrt(-sin^(2) pix) , (d) f(x)=(1)/sqrt(|x|-x|) and g(x)=1/sqrt(x-|x|) (e) f(x)=arc sin (|x|x-3) , (f) f(x)=arc cos ""1/(sin x)