Home
Class 12
MATHS
Find the domain and range of f(x)=sin...

Find the domain and range of
`f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x.`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain and range of the function \( f(x) = \sin^{-1}x + \tan^{-1}x + \sec^{-1}x \), we will analyze each component of the function step by step. ### Step 1: Determine the Domain of Each Function Component 1. **Domain of \( \sin^{-1}x \)**: - The domain of \( \sin^{-1}x \) is \( [-1, 1] \). 2. **Domain of \( \tan^{-1}x \)**: - The domain of \( \tan^{-1}x \) is \( (-\infty, \infty) \) (all real numbers). 3. **Domain of \( \sec^{-1}x \)**: - The domain of \( \sec^{-1}x \) is \( (-\infty, -1] \cup [1, \infty) \). ### Step 2: Find the Common Domain To find the domain of \( f(x) \), we need the intersection of the domains of all three functions: - \( \sin^{-1}x: [-1, 1] \) - \( \tan^{-1}x: (-\infty, \infty) \) - \( \sec^{-1}x: (-\infty, -1] \cup [1, \infty) \) The common points in these intervals are: - The only points that fall within \( [-1, 1] \) and also satisfy \( \sec^{-1}x \) are \( -1 \) and \( 1 \). Thus, the domain of \( f(x) \) is: \[ \text{Domain} = \{-1, 1\} \] ### Step 3: Evaluate \( f(x) \) at the Domain Points 1. **Calculate \( f(-1) \)**: \[ f(-1) = \sin^{-1}(-1) + \tan^{-1}(-1) + \sec^{-1}(-1) \] - \( \sin^{-1}(-1) = -\frac{\pi}{2} \) - \( \tan^{-1}(-1) = -\frac{\pi}{4} \) - \( \sec^{-1}(-1) = \pi \) Therefore, \[ f(-1) = -\frac{\pi}{2} - \frac{\pi}{4} + \pi = \frac{\pi}{4} \] 2. **Calculate \( f(1) \)**: \[ f(1) = \sin^{-1}(1) + \tan^{-1}(1) + \sec^{-1}(1) \] - \( \sin^{-1}(1) = \frac{\pi}{2} \) - \( \tan^{-1}(1) = \frac{\pi}{4} \) - \( \sec^{-1}(1) = 0 \) Therefore, \[ f(1) = \frac{\pi}{2} + \frac{\pi}{4} + 0 = \frac{3\pi}{4} \] ### Step 4: Determine the Range The values obtained from evaluating \( f(x) \) at the points in the domain are: - \( f(-1) = \frac{\pi}{4} \) - \( f(1) = \frac{3\pi}{4} \) Thus, the range of \( f(x) \) is: \[ \text{Range} = \left\{ \frac{\pi}{4}, \frac{3\pi}{4} \right\} \] ### Final Answer - **Domain**: \( \{-1, 1\} \) - **Range**: \( \left\{ \frac{\pi}{4}, \frac{3\pi}{4} \right\} \)

To find the domain and range of the function \( f(x) = \sin^{-1}x + \tan^{-1}x + \sec^{-1}x \), we will analyze each component of the function step by step. ### Step 1: Determine the Domain of Each Function Component 1. **Domain of \( \sin^{-1}x \)**: - The domain of \( \sin^{-1}x \) is \( [-1, 1] \). 2. **Domain of \( \tan^{-1}x \)**: ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.8|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.9|13 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.6|8 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|31 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the domain and range of f(x)=|x-1|

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)x

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)x

Find the domain and range of f(x)(1)/(2-sin3x).

Find the domain and range of f(x)=(x)/(1+x^(2))

" 1.Find the domain and range of "f(x)=sqrt(x-3)

The domain and range of f(x)=sin^(1)x+cos^(-1)x+tan^(-1)x+cot^(-1)x+sec^(-1)x+cos ec^(-1)x respectively are

Range of f(x)=sin^(-1)x+sec^(-1)x is

Find the range of f(x) = sin^(-1) x + tan^(-1) x + cos^(-1) x

Find the domain and range of f(x)=(1)/(sqrt(x-2))