Home
Class 12
MATHS
f(x)={(log(e)x",",0lt x lt 1),(x^(2)-1 "...

`f(x)={(log_(e)x",",0lt x lt 1),(x^(2)-1 ",",x ge 1):}` and `g(x)={(x+1",",x lt 2),(x^(2)-1 ",",x ge 2):}`.
Then find `g(f(x)).`

Text Solution

Verified by Experts

The correct Answer is:
`g(f(x))={(1+"In "x",",0lt x lt 1),(x^(2)",",1 le x lt sqrt(3)),((x^(2)-1)^(2)-1 ",",x ge sqrt(3)):}`

`f(x)={(log_(e)x",",0lt x lt 1),(x^(2)-1 ",",x ge 1):}` and `g(x)={(x+1",",x lt 2),(x^(2)-1 ",",x ge 2):}`
`g(f(x))={(f(x)+1",",f(x) lt 2),((f(x))^(2)-1 ",",f(x) ge 2):}`
`={(log_(e)x+1",",log_(e)x lt 2","0lt x lt 1),(x^(2)-1+1",",x^(2)-1 lt 2","x ge 1),((log_(e)x)^(2)-1",",log_(e)x ge 2","0lt x lt 1),((x^(2)-1)^(2)-1 ",",x^(2)-1 ge 2"," x ge 1):}`
`={(log_(e)x+1",", x lt e^(2)","0lt x lt 1),(x^(2)",",-sqrt(3)lt x lt sqrt(3)","x ge 1),((log_(e)x)^(2)-1",",x ge e^(2)","0lt x lt 1),((x^(2)-1)^(2)-1 ",",x le -sqrt(3) " or "x ge sqrt(3)"," x ge 1):}`
`={(log_(e)x+1",",0lt x lt 1),(x^(2)",",1 le x lt sqrt(3)),((x^(2)-1)^(2)-1 ",",x ge sqrt(3)):}`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.13|7 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.14|13 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.11|7 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|31 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(x^(3)-1",", x lt2),(x^(2)+3"," , x ge 2):} Then

If f(x) ={(x^(3)", " x lt1),(2x-1", " x ge 1):} " and " g(x)={(3x", " x le2),(x^(2)", " x gt 2):} " then find " (f-g)(x).

Let f(x)={(x^(2)-4x+3",",x lt 3),(x-4",",x ge 3):} and g(x)={(x-3",",x lt 4),(x^(2)+2x+2",",x ge 4):} . Describe the function f//g and find its domain.

If f(x)={(2x", for " x lt 0),(2x+1", for " x ge 0):} , then

If f(x) = {{:(x - 3",",x lt 0),(x^(2) - 3x + 2",",x ge 0):} , then g(x) = f(|x|) is

Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} The range of the function f(g(x)) is

f(x) {{:(x + 1"," if x ge 1 ),(x^(2)+ 1"," if x lt 1):}

Let f(x)={{:(x+a,","x lt 0),(|x-1|,","x ge 0):} and g(x)={{:(x+1,", if " x lt 0),((x-1)^2+b ,"," x ge 0):} If gof is continuous (a gt 0) then