Home
Class 12
MATHS
If (x,y) lies on the ellipse x^(2)+2y^(3...

If `(x,y)` lies on the ellipse `x^(2)+2y^(3) = 2`, then maximum value of `x^(2)+y^(2)+ sqrt(2)xy - 1` is

A

`(sqrt(5)+1)/(2)`

B

`(sqrt(5)-1)/(2)`

C

`(sqrt(5)+1)/(4)`

D

`(sqrt(5)-1)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
A

Any point on ellipse `x^(2) + 2y^(2) =2` is
`x = sqrt(2) cos theta, y = sin theta`
`alpha = x^(2) + y^(2) +sqrt(2) xy -1`
`= 2 cos^(2) theta + sin^(2) theta + sin 2 theta -1`
`=(1+cos 2 theta)/(2)+ sin 2 theta`
`alpha_(max) = (sqrt(5)+1)/(2)`
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos
  • ELLIPSE AND HYPERBOLA

    CENGAGE|Exercise Question Bank|28 Videos

Similar Questions

Explore conceptually related problems

If (x,y) lies on circle x^(2)+y^(2)=1, then maximum value of (x+y)^(2)

If 2x+y=5 then the maximum value of x^(2)+3xy+y^(2) is

If 4x^(2)+y^(2)=1 then the maximum value of 12x^(2)-3y^(2)+16xy is

If xy = 6 and x^(2) y + xy^(2) + x+y =63 , then the value of x^(2) +y^(2) is

If x,y are integral solutions of 2x^(2)+3xy-2y^(2)=3, then value of |x-y|

If x,y are integral solutions of 2x^(2)-3xy-2y^(2)=7, then value of |x+y|

If x^(2) + y^(2) = 12 xy , then find the value of (x^(2))/(y^(2)) + (y^(2))/(x^(2)) .

Let x,y in R such that (x^(2)+y^(2))^(2)=xy(x^(2)-y^(2))+1, then maximum value of (x^(2)+y^(2)) is