Home
Class 12
MATHS
PQ and QR are two focal chords of an ell...

PQ and QR are two focal chords of an ellipse and the eccentric angles of P,Q,R are `2alpha, 2beta, 2 gamma`, respectively then `tan beta gamma` is equal to

A

`cot alpha`

B

`cot^(2)alpha`

C

`2 cot alpha`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

`(x^(2))/(a^(2)) +(y^(2))/(b^(2)) =1`
`P(a cos 2alpha, b sin 2 alpha), Q (a cos 2 beta, b sin 2 beta)`
`R(a cos 2 gamma,b sin 2 gamma)`
Equation of chord PQ is
`(x)/(a) cos (alpha + beta) + (y)/(b) sin (alpha + beta) = cos (alpha - beta)`
PQ passes through the focus (ae,0)
`:. e = (cos(alpha-beta))/(cos(alpha+beta))`
`:. (cos(alpha-beta))/(cos(alpha+beta)) =-(cos(alpha-gamma))/(cos(alpha+gamma))`
Apply componendo and dividendo, we get
`(cos(alpha+beta)+cos(alpha-beta))/(cos(alpha+beta)-cos(alpha-beta))=(cos(alpha+gamma)-cos(alpha-gamma))/(cos(alpha+gamma)+cos(alpha-gamma))`
`(2 cos alpha cos beta)/(2 sin alpha sin beta) = (2 sin alpha sin gamma)/(2 cos alpha cos gamma)`
`tan beta tan gamma = cot^(2) alpha`
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos
  • ELLIPSE AND HYPERBOLA

    CENGAGE|Exercise Question Bank|28 Videos

Similar Questions

Explore conceptually related problems

If alpha+beta-gamma=pi , then sin^(2)alpha=sin^(2)beta-sin^(2)gamma is equal to

If a line makes angle alpha, beta and gamma with the axes respectively then sin^(2)alpha+sin^(2)beta+sin^(2)gamma=

If a line makes angle alpha, beta and gamma with the coordinate axes respectively, then cos2alpha+cos 2 beta+cos 2gamma=

If a line makes the angle alpha,beta,gamma with the axes, then what is the value of 1+cos2alpha+cos2beta+cos2gamma equal to

If alpha,beta ,gamma are direction angles of a line , then cos 2alpha + cos 2beta + cos 2 gamma =

In Delta PQR, Q is a right angle, PQ = 3 and QR = 4. If angle P = alpha and R = beta, then tan beta is equal to

If a right angle be divided into three parts alpha,beta and gamma, prove that cot alpha=(tan beta+tan gamma)/(1-tan beta tan gamma)

If a right angle be divided into three parts alpha,beta and gamma, prove that cot alpha=(tan beta+tan gamma)/(1-tan beta tan gamma)