Home
Class 12
MATHS
The minimum value of {(r+5 -4|cos theta|...

The minimum value of `{(r+5 -4|cos theta|)^(2) +(r-3|sin theta|)^(2)} AA r, theta in R` is

A

0

B

2

C

3

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( z = (r + 5 - 4 |\cos \theta|)^2 + (r - 3 |\sin \theta|)^2 \), we will follow these steps: ### Step 1: Rewrite the expression Let \( z = (r + 5 - 4 |\cos \theta|)^2 + (r - 3 |\sin \theta|)^2 \). ### Step 2: Introduce new variables Let \( x = r + 5 \) and \( y = r \). Then, we can express \( r \) in terms of \( x \) as \( r = x - 5 \). Thus, we can rewrite \( z \) in terms of \( x \): \[ z = (x - 4 |\cos \theta|)^2 + ((x - 5) - 3 |\sin \theta|)^2 \] ### Step 3: Expand the expression Now, we expand the expression: \[ z = (x - 4 |\cos \theta|)^2 + (x - 5 - 3 |\sin \theta|)^2 \] Expanding both squares: \[ = (x^2 - 8x |\cos \theta| + 16 \cos^2 \theta) + (x^2 - 10x + 25 - 6x |\sin \theta| + 9 \sin^2 \theta) \] Combining like terms gives: \[ z = 2x^2 - (8 |\cos \theta| + 10 + 6 |\sin \theta|) x + (16 \cos^2 \theta + 25 + 9 \sin^2 \theta) \] ### Step 4: Find the minimum value To find the minimum value of \( z \), we can treat it as a quadratic function in \( x \): \[ z = 2x^2 - (8 |\cos \theta| + 10 + 6 |\sin \theta|) x + (16 \cos^2 \theta + 25 + 9 \sin^2 \theta) \] The minimum value of a quadratic \( ax^2 + bx + c \) occurs at \( x = -\frac{b}{2a} \). Here, \( a = 2 \) and \( b = -(8 |\cos \theta| + 10 + 6 |\sin \theta|) \): \[ x_{\text{min}} = \frac{8 |\cos \theta| + 10 + 6 |\sin \theta|}{4} \] ### Step 5: Substitute back to find \( z \) Substituting \( x_{\text{min}} \) back into the expression for \( z \) will give us the minimum value. However, we can also analyze the terms: 1. The minimum of \( |\cos \theta| \) is 0 and the maximum is 1. 2. The minimum of \( |\sin \theta| \) is 0 and the maximum is 1. Thus, we can evaluate \( z \) at critical points: - When \( |\cos \theta| = 1 \) and \( |\sin \theta| = 0 \): \[ z = (r + 5 - 4)^2 + (r - 0)^2 = (r + 1)^2 + r^2 \] - When \( |\cos \theta| = 0 \) and \( |\sin \theta| = 1 \): \[ z = (r + 5)^2 + (r - 3)^2 \] ### Step 6: Analyze the results By analyzing the values for different combinations of \( |\cos \theta| \) and \( |\sin \theta| \), we can find that the minimum value occurs when the two curves are tangent to each other. ### Conclusion After evaluating the expression and considering the geometry of the situation, we find that the minimum value of \( z \) is \( 0 \).

To find the minimum value of the expression \( z = (r + 5 - 4 |\cos \theta|)^2 + (r - 3 |\sin \theta|)^2 \), we will follow these steps: ### Step 1: Rewrite the expression Let \( z = (r + 5 - 4 |\cos \theta|)^2 + (r - 3 |\sin \theta|)^2 \). ### Step 2: Introduce new variables Let \( x = r + 5 \) and \( y = r \). Then, we can express \( r \) in terms of \( x \) as \( r = x - 5 \). Thus, we can rewrite \( z \) in terms of \( x \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos
  • ELLIPSE AND HYPERBOLA

    CENGAGE|Exercise Question Bank|28 Videos

Similar Questions

Explore conceptually related problems

Find the minimum value of (2-a-4 sec theta)^(2)+(a-3 tan theta)^(2), a in R.

The greatest value of (2sin theta+3cos theta+4)^(3).(6-2sin theta-3cos theta)^(2) , as theta in R , is

The minimum value of 2 sin^2 theta + 3cos^2 theta is

Maximum value of sum_(n=1)^(3)(cos^(2n)theta+(-1)^(n+1)sin^(2n)theta),AA theta in R in R

The minimum value of determinant Delta=|{:(1,cos theta,1),(-cos theta , 1,cos theta),(-1,-cos theta, 2):}| AA theta in R is :

Minimum value of a cos theta+b sin theta+c where theta in R and a,b,c in R

If tan theta=(r)/(s) , find the value of (r sin theta-s cos theta)/(r sin theta+s cos theta)

If tan theta = (5)/(4) , then the value of ((3 sin theta + 4 cos theta)/(3 sin theta - 4 cos theta))^(2) is

Minimum value of the expression cos^(2)theta-(6sin theta cos theta)+3sin^(2)theta+2, is

The minimum value of r(>0) where r^(2)=(a^(2))/(cos^(2)theta)+(b^(2))/(sin^(2)theta)(a>b>0) is