Home
Class 12
MATHS
If the curve x^(2)+3y^(2)=9 subtends an ...

If the curve `x^(2)+3y^(2)=9` subtends an obtuse angle at the point `(2alpha, alpha)` then a possible value of `alpha^(2)` is

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
B

The given curve is `(x^(2))/(9)+(y^(2))/(3) =1`, whose director circle is `x^(2) + y^(2) =12`.
For the required condition `(2alpha, alpha)` should lie inside the circle and outside the ellipse
i.e., `(2alpha)^(2) + 3alpha^(2) - 9 gt 0` and `(2alpha)^(2) + alpha^(2) - 12 lt 0`
i.e., `(9)/(7) lt alpha^(2) lt (12)/(5)`
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos
  • ELLIPSE AND HYPERBOLA

    CENGAGE|Exercise Question Bank|28 Videos

Similar Questions

Explore conceptually related problems

If sin alpha=-3/6, alpha in [0,2pi] then the possible values of cos (alpha/2) , is/are

If sin alpha=-(3)/(5),alpha in[0,2 pi] then the possible values of cos((alpha)/(2)) is

The graph of 2x=5-3y cuts the x-axis at the point P(alpha,beta) . The value of (2alpha+beta) is :

If A=[(alpha , 2),(2,alpha)] and |A^3|=125 , then the value of alpha is :

If x^(3)+3x^(2)-9x+c=0 have roots alpha,alpha and beta then possible value of alpha+beta is

If the tangent drawn to the curve y=x^(3)+3x^(2)+2x+2" at "(0,2) also touches the curve y=kx^(2) at (alpha,beta), then absolute value of (alpha+(beta)/(k)) equal to

The graph of 2x = 5-3y cuts the x-axis at the point P( alpha,beta ). The value of (2alpha+beta) is

If (alpha,alpha) lies inside the circle x^(2)+y^(2)=9 then find the region of (alpha,alpha)

Find the value of alpha for which the point (alpha -1, alpha) lies inside the parabola y^(2) = 4x .