Home
Class 12
MATHS
If the normals at alpha, beta,gamma and ...

If the normals at `alpha, beta,gamma` and `delta` on an ellipse are concurrent then the value of `(sigma cos alpha)(sigma sec alpha)` I

A

2

B

4

C

6

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Let the equation of the ellipse be
`(x^(2))/(a^(2)) + (y^(2))/(b^(2)) =1`
Equation of a normal at any point `P(theta)` on the ellipse is
`(a sec theta) x -(b cosec theta)y = a^(2)e^(2)`
Let normal is passing through a point `A(h,k)`
`rArr (ah sec theta - a^(2)e^(2))^(2) = (bk cosec theta)^(2)`
`rArr a^(2)h^(2) sec^(2) theta -2a^(3)e^(2)h sec theta +a^(4) e^(4)`
`= b^(2)k^(2) cosec^(2) theta = b^(2)k^(2) ((sec^(2)theta)/(sec^(2)theta-1))`
`rArr a^(2)h^(2) sec^(4) theta - 2a^(3) e^(2)h sec^(3) theta + (a^(4) e^(4) -a^(2)h^(2)-b^(2)k^(2))`
`sec^(2) theta + 2a^(3)a^(2)h sec theta - a^(4) e^(4) =0` (1)
If `alpha, beta, gamma` and `delta` be the roots of the above equation, then
`Sigma sec alpha =(2a^(3)e^(2)h)/(a^(2)h^(2)) = (2ae^(2))/(h)`
Multiplying equation (1) by `cos^(4) theta`, it reduces to
`a^(4)e^(4)cos^(4) theta - 2a^(3)e^(2)h cos^(3) theta - (a^(4)e^(4)-a^(2)h^(2)-b^(2)k^(2))`
`cos^(2) theta + 2a^(3) e^(2) h cos theta - a^(2)h^(2) = 0` (2)
Then `Sigma cos alpha = (2a^(3)e^(2)h)/(a^(4)e^(4)) = (2h)/(ae^(2))`
Hence, we have
`(Sigma sec alpha) (Sigma cos alpha) = (2ae^(2))/(h).(2h)/(ae^(2)) =4`
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos
  • ELLIPSE AND HYPERBOLA

    CENGAGE|Exercise Question Bank|28 Videos

Similar Questions

Explore conceptually related problems

Suppose alpha,beta,gamma and delta are the interior angles of regular pentagon,heagon,decagon,and dodeccagon,respectively,then the value of |cos alpha sec beta cos gamma csc delta| is

Let alpha,beta and gamma are the angles of a right angle triangle,then the value of sin alpha*sin beta*sin(alpha-beta)+sin beta*sin gamma*sin(beta-gamma)+sin gamma*sin alpha*sin(gamma-beta)+sin(beta-gamma)*sin(gamma-gamma)*sin(gamma-

If cos(alpha+beta)sin(gamma+delta)=cos(alpha-beta)sin(gamma-delta) then the value of cot alpha cot beta cot gamma, is

If cos(alpha+beta)sin(gamma +delta) = cos(alpha-beta)sin(gamma-delta) , then the value of cotalpha*cotbeta.cotgamma is :

If alpha,beta,gamma and delta are roots of equation x^(4)-7x^(2)+x-5=0, then the value of (alpha+beta+gamma)(alpha+beta+delta)(beta+gamma+delta)(alpha+gamma+delta) is equal to

Let cos(alpha-beta) + cos(beta - gamma) + cos(gamma - alpha)= -3/2 , then the value of cos alpha + cos beta + cos gamma is

If cos (alpha + beta) sin (gamma + delta) = cos (alpha - beta) sin (gamma - delta) then:

Let A = (cos alpha, sin alpha), B = (cos beta , sin beta), C = (cos gamma, sin gamma) . If origin is the orthocentre of the Delta ABC , then the value of sum cos (2 alpha - beta - gamma)= ____________