Home
Class 12
MATHS
cos^(-1)(sqrt(1+cos x)/2)...

`cos^(-1)(sqrt(1+cos x)/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = \cos^{-1}\left(\frac{\sqrt{1 + \cos x}}{2}\right) \), we will follow these steps: ### Step 1: Rewrite the expression using trigonometric identities We know from trigonometric identities that: \[ \cos^2 \theta = \frac{1 + \cos 2\theta}{2} \] This means we can express \( \frac{\sqrt{1 + \cos x}}{2} \) in terms of cosine. ### Step 2: Identify the angle From the identity, we can set: \[ \frac{\sqrt{1 + \cos x}}{2} = \cos \theta \] This implies: \[ \sqrt{1 + \cos x} = 2 \cos \theta \] Squaring both sides, we get: \[ 1 + \cos x = 4 \cos^2 \theta \] ### Step 3: Solve for \( \theta \) From the equation \( 1 + \cos x = 4 \cos^2 \theta \), we can express \( \cos \theta \) as: \[ \cos^2 \theta = \frac{1 + \cos x}{4} \] Thus: \[ \theta = \cos^{-1}\left(\sqrt{\frac{1 + \cos x}{4}}\right) \] ### Step 4: Relate \( y \) and \( x \) Since \( y = \cos^{-1}(\cos \theta) \), we have: \[ y = \theta \] This means: \[ y = \cos^{-1}\left(\sqrt{\frac{1 + \cos x}{4}}\right) \] ### Step 5: Differentiate \( y \) with respect to \( x \) To differentiate \( y \), we use the chain rule. The derivative of \( \cos^{-1}(u) \) is: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] where \( u = \frac{\sqrt{1 + \cos x}}{2} \). ### Step 6: Find \( \frac{du}{dx} \) First, we find \( u \): \[ u = \frac{\sqrt{1 + \cos x}}{2} \] Now, differentiating \( u \): \[ \frac{du}{dx} = \frac{1}{2\sqrt{1 + \cos x}} \cdot (-\sin x) \] Thus: \[ \frac{du}{dx} = -\frac{\sin x}{2\sqrt{1 + \cos x}} \] ### Step 7: Substitute \( u \) and \( \frac{du}{dx} \) into the derivative Now substituting back into the derivative: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1 - \left(\frac{\sqrt{1 + \cos x}}{2}\right)^2}} \cdot \left(-\frac{\sin x}{2\sqrt{1 + \cos x}}\right) \] ### Step 8: Simplify the expression We simplify \( \sqrt{1 - \left(\frac{\sqrt{1 + \cos x}}{2}\right)^2} \): \[ \sqrt{1 - \frac{1 + \cos x}{4}} = \sqrt{\frac{4 - (1 + \cos x)}{4}} = \sqrt{\frac{3 - \cos x}{4}} = \frac{\sqrt{3 - \cos x}}{2} \] ### Final Step: Combine everything Thus, the derivative becomes: \[ \frac{dy}{dx} = \frac{\sin x}{\sqrt{3 - \cos x} \cdot \sqrt{1 + \cos x}} \] ### Final Answer \[ \frac{dy}{dx} = \frac{\sin x}{\sqrt{3 - \cos x} \cdot \sqrt{1 + \cos x}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

arctan^(-1)((cos x)/(1-sin x))-cos^(-1)(sqrt((1+cos x)/(1-cos x)))=(pi)/(4),x in(0,(pi)/(2))

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

prove that tan^(-1)((cos x)/(1-sin x))-cot^(-1)((sqrt(1+cos x))/(sqrt(1-cos x)))=(pi)/(4),x varepsilon(0,(pi)/(2))

cos^(-1){sqrt((1+x)/(2))}

tan^(-1)((1)/(sqrt(3))(tan x)/(2))=(1)/(2)cos^(-1)((1+2cos x)/(2+cos x))

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

tan ^(-1)(sqrt((1-cos 3 x)/(1+cos x)))

cos^(-1){sqrt(1-x^(2))}