Home
Class 12
MATHS
tan^(-1)((sin x)/(1+cos x))...

`tan^(-1)((sin x)/(1+cos x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = \tan^{-1}\left(\frac{\sin x}{1 + \cos x}\right) \), we will simplify the expression inside the inverse tangent function and then differentiate the result. ### Step-by-Step Solution: 1. **Recognize the Identity**: We know that: \[ \tan\left(\frac{x}{2}\right) = \frac{\sin x}{1 + \cos x} \] This identity will help us rewrite the expression inside the inverse tangent. 2. **Rewrite the Function**: Using the identity, we can rewrite \( y \): \[ y = \tan^{-1}\left(\tan\left(\frac{x}{2}\right)\right) \] Since the tangent and the arctangent functions are inverses, this simplifies to: \[ y = \frac{x}{2} + n\pi \quad (n \in \mathbb{Z}) \] However, we can ignore the \( n\pi \) term for the principal value, so: \[ y = \frac{x}{2} \] 3. **Differentiate the Function**: Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{2} \] ### Final Answer: Thus, the derivative of \( y = \tan^{-1}\left(\frac{\sin x}{1 + \cos x}\right) \) is: \[ \frac{dy}{dx} = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1) ((1-sin x)/(cos x)),"then " dy/dx=

int tan^(-1) ((sin2x)/(1+cos 2x))dx

Evaluate: (i) int tan^(-1)((sin2x)/(1+cos2x))dx( ii) int cos^(-1)(sin x)dx

Evaluate the following integrals: int tan^(-1)((sin2x)/(1+cos2x))dx

tan^(-1)((cos x)/(1+sin x))

tan^(-1)((cos x)/(1-sin x))

tan^(-1)((1-cos x)/(sin x))

"Differentiate: "tan^(-1)((cos x)/(1+sin x))

If y=tan^(-1) ((cos x)/(1-sin x)),"then " dy/dx=