Home
Class 12
MATHS
tan ^(-1)(sqrt((1-cos 3 x)/(1+cos x)))...

`tan ^(-1)(sqrt((1-cos 3 x)/(1+cos x)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1} \left( \sqrt{\frac{1 - \cos 3x}{1 + \cos 3x}} \right) \), we can follow these steps: ### Step 1: Use Trigonometric Identities We start with the expression inside the inverse tangent function: \[ \sqrt{\frac{1 - \cos 3x}{1 + \cos 3x}} \] We can use the trigonometric identities: - \( 1 - \cos \theta = 2 \sin^2 \left(\frac{\theta}{2}\right) \) - \( 1 + \cos \theta = 2 \cos^2 \left(\frac{\theta}{2}\right) \) ### Step 2: Apply the Identities Using these identities for \( \theta = 3x \): \[ 1 - \cos 3x = 2 \sin^2 \left(\frac{3x}{2}\right) \] \[ 1 + \cos 3x = 2 \cos^2 \left(\frac{3x}{2}\right) \] Substituting these into our expression gives: \[ \sqrt{\frac{2 \sin^2 \left(\frac{3x}{2}\right)}{2 \cos^2 \left(\frac{3x}{2}\right)}} = \sqrt{\frac{\sin^2 \left(\frac{3x}{2}\right)}{\cos^2 \left(\frac{3x}{2}\right)}} \] ### Step 3: Simplify the Expression This simplifies to: \[ \sqrt{\tan^2 \left(\frac{3x}{2}\right)} = |\tan \left(\frac{3x}{2}\right)| \] Since the range of \( \tan^{-1} \) is from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \), we can drop the absolute value: \[ \tan^{-1} \left( |\tan \left(\frac{3x}{2}\right)| \right) = \tan^{-1} \left( \tan \left(\frac{3x}{2}\right) \right) \] ### Step 4: Final Result Thus, we have: \[ \tan^{-1} \left( \tan \left(\frac{3x}{2}\right) \right) = \frac{3x}{2} \] Therefore, the final answer is: \[ \frac{3x}{2} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find (d)/(dx) tan^(-1)(sqrt((1-cos x)/(1+cos x))) .

Solve : tan^(-1)(sqrt((1-cos x)/(1+cos x))), x lt pi

Prove that tan^(-1)(sqrt((1-cos x)/(1+cos x)))=(x)/(2)

convert in the simplest form: tan^(-1)(sqrt((1-cos x)/(1+cos x))),x

Write the following function in the simplest form: tan^(-1)sqrt((1-cos x)/(1+cos x))

If y = tan ^(-1) (sqrt((1+cos x)/(1-cos x))), " find " (dy)/(dx)

If x epsilon(7pi,8pi) , then "tan"^(-1)sqrt((1-"cos" x)/(1+"cos" x))=

Differentiate the following functions with respect to x:tan^(-1){sqrt((1+cos x)/(1-cos x))}

If y=tan^(-1)sqrt((1-cos x)/(1+cos x)), prove that (dy)/(dx)=(1)/(2)

Evaluate: int tan^(-1){sqrt(((1-cos2x)/(1+cos2x)))}