Home
Class 12
MATHS
sec^-1((1+tan ^2x)/(1-tan ^2 x))...

`sec^-1((1+tan ^2x)/(1-tan ^2 x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sec^{-1}\left(\frac{1 + \tan^2 x}{1 - \tan^2 x}\right) \), we can follow these steps: ### Step-by-step Solution: 1. **Recall the Identity**: We know that \( \tan^2 x = \frac{\sin^2 x}{\cos^2 x} \). Therefore, we can rewrite the expression using this identity. 2. **Rewrite the Expression**: The expression can be rewritten as: \[ \frac{1 + \tan^2 x}{1 - \tan^2 x} = \frac{1 + \frac{\sin^2 x}{\cos^2 x}}{1 - \frac{\sin^2 x}{\cos^2 x}} = \frac{\frac{\cos^2 x + \sin^2 x}{\cos^2 x}}{\frac{\cos^2 x - \sin^2 x}{\cos^2 x}} = \frac{1}{\cos^2 x - \sin^2 x} \] since \( \sin^2 x + \cos^2 x = 1 \). 3. **Simplify the Denominator**: We can simplify the denominator: \[ \cos^2 x - \sin^2 x = \cos 2x \] Thus, we have: \[ \frac{1 + \tan^2 x}{1 - \tan^2 x} = \frac{1}{\cos 2x} \] 4. **Substitute Back**: Now substituting back into the original expression: \[ \sec^{-1}\left(\frac{1}{\cos 2x}\right) = \sec^{-1}(\sec 2x) \] 5. **Final Result**: Since \( \sec^{-1}(\sec \theta) = \theta \) for \( \theta \) in the range of \( \sec^{-1} \), we have: \[ \sec^{-1}(\sec 2x) = 2x \] Thus, the final answer is: \[ \sec^{-1}\left(\frac{1 + \tan^2 x}{1 - \tan^2 x}\right) = 2x \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

sec^(-1)((1+tan^(2)x)/(1-tan^(2)x))

sec^(2)2x=1-tan2x

Prove that (sec8x-1)/(sec4x-1)=(tan8x)/(tan2x)

int(sec^(2)x)/((1+tan x)(2+tan x))dx

int(x^(2)(x sec^(2)x+tan x))/((x tan x+1)^(2))

Differentiate the following functions with respect to x(2x+3)/(x^(2)-5) (ii) (x+3)/(x^(2)+1) (iii) (1+tan x)/(1-tan x) (iv) (sec x+tan x)/(sec x-tan x)

If y=log sqrt((1+tan x)/(1-tan x)), Prove that (dy)/(dx)=sec2x

int (tanx sec^(2)x)/((1-tan^(2)x))dx.

int_(0)^(pi//4) (sec^(2)x)/((1+tan x)(2+tan x))dx is equal to

int(sec^2x)/(1+tan x)dx